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Abstract

Introduction

Central sensitization plays a pivotal role in maintenance of pain and is believed to be intri-

cately involved in several chronic pain conditions. One clinical manifestation of central sensi-

tization is secondary hyperalgesia. The degree of secondary hyperalgesia presumably

reflects individual levels of central sensitization. The objective of this study was to investi-

gate the association between areas of secondary hyperalgesia and volumes of the caudate

nuclei and other brain structures involved in pain processing.

Materials and methods

We recruited 121 healthy male participants; 118 were included in the final analysis. All par-

ticipants underwent whole brain magnetic resonance imaging (MRI). Prior to MRI, all partici-

pants underwent pain testing. Secondary hyperalgesia was induced by brief thermal

sensitization. Additionally, we recorded heat pain detection thresholds (HPDT), pain during

one minute thermal stimulation (p-TS) and results of the Pain Catastrophizing Scale (PCS)

and Hospital Anxiety and Depression score (HADS).

Results

We found no significant associations between the size of the area of secondary hyper-

algesia and the volume of the caudate nuclei or of the following structures: primary
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somatosensory cortex, anterior and mid cingulate cortex, putamen, nucleus accumbens,

globus pallidus, insula and the cerebellum. Likewise, we found no significant associations

between the volume of the caudate nuclei and HPDTs, p-TS, PCS and HADS.

Conclusions

Our findings indicate that the size of the secondary hyperalgesia area is not associated with

the volume of brain structures relevant for pain processing, suggesting that the propensity to

develop central sensitization, assessed as secondary hyperalgesia, is not correlated to

brain structure volume.

Introduction

Nociceptive stimuli can elicit sensitization of neurons in the central pain pathways.

This phenomenon of central sensitization is a manifestation of the plasticity in the central

nervous system (CNS) and represents the CNS’s ability to alter and produce augmented pain

responses by amplification of synaptic inputs and recruitment of subthreshold neurons. It is

believed to be a contributing factor for individual pain sensitivity and may play a pivotal role

in the maintenance and chronification of pain [1, 2].

Central sensitization can readily be investigated in humans with pain models utilizing

either heat [3, 4], cold [5], chemical [6] or electrical [7] stimulation. Noxious heat stimulation

to the skin produces primary hyperalgesia at the site of injury and secondary hyperalgesia with

reduced thresholds for mechanical stimulation in the non-injured skin surrounding the injury

[8–10]. Current evidence indicates that secondary hyperalgesia following a standardized heat

injury is a result of central sensitization [1, 2, 11] and is expressed differently among individu-

als, where some individuals develop small while others develop large secondary hyperalgesia

areas [9, 12]. In addition, individuals will continue to develop secondary hyperalgesia of simi-

lar magnitude when exposed to the same noxious stimuli [9, 12]. Secondary hyperalgesia is

thus a robust phenomenon that may be used to phenotypically characterize individuals [9, 12],

and may be used as a model to evaluate the individual level of central sensitization.

The occurrence of central sensitization in different chronic pain conditions suggests that

certain individuals may be predisposed towards developing central sensitization [1, 2, 9]. An

important question is why some individuals have a higher propensity for developing central

sensitization, and if such individuals have a subsequent higher risk of developing pain hyper-

sensitivity and chronic pain [1]. Currently, no sufficient explanation of the high inter-individ-

ual variance in secondary hyperalgesia areas has been provided. Understanding these

variations may lead to crucial insights into central mechanisms of pain and possibly to identifi-

cation of biomarkers for central sensitization.

A recent exploratory brain MRI study found structural and functional differences when

comparing healthy volunteers with a small vs. large area of secondary hyperalgesia [13], dem-

onstrating an inverse correlation of the volume of the caudate nuclei and the area of secondary

hyperalgesia. The caudate nuclei are essential for the integration and control of motor, sensory,

and motivational information [14]; however, studies suggest that they are also activated during

pain expectancy [15], are involved in the modulation and suppression of pain [16], and are

important sites for the sensory processing and spatial localization of noxious stimuli [17].

Moreover, clinical studies have indicated that reduced grey matter volume of the caudate

nuclei is seen in patients with various chronic pain conditions [18–20]. Several other brain
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structures, including the primary somatosensory cortex, anterior and mid cingulate cortex,

basal ganglia, insula and the cerebellum have been demonstrated to be intricately involved in

pain processing [21, 22], illustrating the comprehensiveness of pain perception. Finally, animal

and human studies have suggested that specific brainstem structures, including the rostral ven-

tromedial medulla, the nucleus cuneiformis, and the periaqueductal gray may be involved in

the development and maintenance of central sensitization [23].

The aim of the current study was to determine whether differences in brain anatomy were

associated with the propensity to develop central sensitization, assessed as areas of secondary

hyperalgesia. Specifically, we investigated if the size of the secondary hyperalgesia area was

associated with the volume of the caudate nuclei and other brain structures relevant for pain

processing.

Materials and methods

The study was approved by the Danish Committee on Health Research Ethics for the Capital

Region (H-15010473) and the Danish Data Protection Agency (RH-2015-149). In addition,

the study was registered on Clinicaltrials.gov (NCT02567318).

A detailed description of the study design and methods has been published previously [24].

Design

Briefly, the study consisted of two separate parts: Part 1: Pain testing and Part 2: MRI scans.

Pain testing. The isolated results from the pain testing have been presented in a separate

publication [25]. In addition, these data have been used for the analyses of the present MRI

data.

The pain testing was conducted at a minimum of 14 days and at a maximum of 60 days

prior to the MRI scans to avoid any carry-over effects. For details regarding the pain testing

please see the published protocol [24]. Briefly, all included participants were tested with the

following pain models (Fig 1):

Brief thermal sensitization (BTS):

A computer-controlled thermode (Somedic MSA Thermotester; size 2.5 x 5 cm.) was placed

on the upper right thigh. The thermode was then heated to 45˚C for three minutes. Afterwards

the assessment of secondary hyperalgesia (see below) was conducted while the 45˚C heated

thermode remained on the skin of the participant [4, 9, 12, 26]. The assessment took approxi-

mately 1–2 minutes, resulting in a maximum duration of the heat stimulation of 5 min.

Assessment of secondary hyperalgesia:

The area of secondary hyperalgesia was quantified after stimulation with a monofilament

(Von Frey hair) with a nominal value of 18 (bending force 490 mN) in 4 linear paths arranged

in 90˚ around the center of the thermode. Stimulation began well outside the area of secondary

hyperalgesia, and advanced in 5 mm/sec intervals towards the center of the thermode. When

clear change in sensation occurred (intense burning, pricking, tenderness) the location was

marked, and the longitudinal and transverse axes were measured for rectangular area calcula-

tion [4, 8, 9, 12].

Heat pain detection threshold:

The individual heat pain detection threshold (HPDT) was evaluated by placing the ther-

mode on the anterior part of the dominant lower arm. The temperature of the thermode was

then increased by 1˚C/second from a baseline of 32˚C, until the participant perceived the heat

as painful and pressed a button. The HPDT was estimated as an average of 4 separate stimula-

tions with an interval of 6–10 seconds [8, 27].

Pain during thermal stimulation (p-TS):

Secondary hyperalgesia and brain anatomy
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The thermode was placed on the lower non-dominant arm, and was heated to 45˚C for 1

min. During the 1 min. heating the participant evaluated the pain using the electronic Visual

Analog Scale (VAS) (Somedic USB-VAS), with an index of 0–100 mm, where 0 mm repre-

sented “no pain”, and 100 mm represented “worst pain imaginable”. A VAS area under the

curve (VAS-AUC) and a maximum VAS-score was calculated by the computer software

[8, 27].

MRI scans. On the day of the MRI scans each included participant underwent multimodal

whole brain MRI scans (Fig 1); no other tests or assessments were conducted on this study

day. The total duration of the MRI scans was approximately 50 min. Following completion of

MRI-scans, all images were reviewed by an experienced radiology consultant. In the case of

suspected pathological findings, the participant was informed hereof and was referred to a spe-

cialist in neurology for further examination.

MRI data acquisition and imaging protocols:

All MRI scans were performed with a Siemens MAGNETOM Verio 3-tesla MRI scanner,

with b17 software, and a 32-channel head coil.

Anatomical images:

Anatomical images were obtained using a T1-weighted 3D FLASH (160 sagittal slices,

matrix 256x256 mm, Field of view 256 mm, echo time (TE) 2.98 ms, repetition time (TR) 2300

ms, Slice 1 mm, in plane resolution 1x1 mm, flip angle 9˚).

Additional MRI sequences not analysed:

We also performed the following MRI sequences: Diffusion tensor imaging, resting state

epi single shot functional MRI, arterial spin labelling, b0 field maps, T2-FLAIR, T2-weigthed

TSE sequence, and GRE hemo sequences. Due to technical problems we were not able to use

Fig 1. Anatomical presentation of the location of the pain testing and MRI scan sequence. Brief thermal sensitization (BTS) was conducted centrally

on the anterior part of the right thigh in the midline between the anterior superior iliac spine and the base of patella. Heat pain detection threshold

(HPDT) was evaluated on the anterior part of the dominant lower arm; pain during thermal stimulation (p-TS) was evaluated on the anterior part of the

non-dominant lower arm. The MRI-scans were performed a minimum period of 14 days and maximum 60 days after the pain testing. The MRI scans

were conducted in fixed order, starting with T1-weighted 3D anatomical scan (duration: 4 minutes) followed by diffusion tensor imaging (duration: 12

minutes), resting state fMRI scan (duration: 8 minutes) and additional scans of technical or diagnostic character. Total duration of MRI scan sequence

was approximately 50 minutes. Abbreviations: MRI, Magnetic resonance imaging; fMRI, functional Magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0201642.g001
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the DTI-scans for analysis in this study, and consequently the secondary and exploratory out-

come measures described in the published study protocol could therefore not be evaluated at

present. As reported in the published study protocol [24], results from the resting state func-

tional MRI will be reported in a separate paper.

The remaining MRI scans were either of technical character or for diagnostics and will per

protocol not be reported in this paper.

Physiological measurements. Pulse frequency, respiration frequency, and end-tidal

PCO2 were measured during the entire scan session, including before and after the resting

state scan.

Psychological testing. The participants were tested with two separate psychological tests.

The participants completed the psychological tests prior to the pain testing and the MRI scans.

Pain Catastrophizing Scale (PCS) is a 13-point questionnaire on a five-point Likert scale

with values from 0–4. The highest achievable score is 52, and the PCS can be subdivided in 3

sections that evaluate Rumination, Magnification, and Helplessness [28].

Hospital Anxiety and Depression Scale (HADS) is a 14-point questionnaire on a four-point

Likert scale with values ranging from 0–3. The highest achievable score is 53, and the HADS

can be subdivided in two sections that evaluate Anxiety and Depression [29].

Setting

All MRI scans were conducted at the Department of Radiology, Bispebjerg and Frederiksberg

Hospitals, Copenhagen, Denmark. The pain testing [25] was conducted at the department of

Anaesthesiology, Rigshospitalet, Copenhagen, Denmark. Data was collected in the period

from October 2015 to December 2015. All analyses were conducted at the department of

Anaesthesiology, Rigshospitalet, and at the Section of Biostatistics, Faculty of health, Copenha-

gen University, Denmark.

Study participants

Healthy male volunteers age 18–35 years, who had participated in preceding pain testing [25]

were included in the study. Oral and written informed consent was obtained from all partici-

pants prior to inclusion in the study. The participants received EUR 67 (USD 74) for their par-

ticipation in the study. Inclusion and exclusion criteria are listed in Table 1.

Outcome measures

Primary analysis. To investigate the association between the volume of the left and right

caudate nuclei and the magnitude of the area of secondary hyperalgesia induced by brief ther-

mal sensitization.

Secondary analyses. To investigate the association between the magnitude of the area of

secondary hyperalgesia and cortical as well as subcortical brain structures relevant for pain

processing (primary somatosensory cortex, anterior and mid cingulate cortex, putamen,

nucleus accumbens, globus pallidus, insula and the cerebellum).

Exploratory analyses. To investigate the association between the volume of the left and

right caudate nuclei and the following five parameters: 1. HPDT; 2. p-TS max. VAS-score; 3.

p-TS VAS-AUC; 4. PCS; and 5. HADS scores.

To investigate possible neuroanatomical differences between participants displaying a small

area of secondary hyperalgesia (lower quartile) compared to participants displaying a large

area of secondary hyperalgesia (upper quartile). The same cortical and subcortical brain struc-

tures as specified in the primary and secondary analyses were included in the analysis.

Secondary hyperalgesia and brain anatomy
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Sample size analysis

Sample size estimation was based on a Z-test of the Fisher transformed Pearson correlation

with results from a previous study [13]. With a true correlation of R = - 0.4 between the area of

secondary hyperalgesia and the volume of the caudate nuclei, and with a significance level of

2.5–5% according to the single step method, a sample size of 52 was needed to obtain a power

of 0.80 (β = 0.20). Our sample size estimation was based on results from a study were only par-

ticipants that produced small or large area of secondary hyperalgesia were included. In the

present study we aimed to include participants without prior knowledge of their areas of sec-

ondary hyperalgesia and thus also expected inclusion of participants with intermediary size

areas of secondary hyperalgesia. To secure a reasonable high sample size when comparing the

upper and lower quartiles based on area of secondary hyperalgesia we aimed to include 120

participants.

Structural MRI preprocessing

Anatomical T1W-weighted images were preprocessed and analyzed using the FreeSurfer

imaging analysis suite version 5.3, which is freely available for download online (http://surfer.

nmr.mgh.harvard.edu/) and is a semi-automatic software that performs volumetric segmenta-

tion of cortical and subcortical structures [30–32]. Cortical volumes were extracted according

Table 1. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

Age�18 years and�35 years

Speak and understand the Danish language

Male sex

Signed informed consent

Participation and completion of the study: “Heat pain

detection threshold is associated with the area of

secondary hyperalgesia following brief thermal

sensitization: a study of healthy male volunteers” [19]

Inability to cooperate to the test

Weekly intake of >21 units of alcohol, or intake of >3

units of alcohol within 24 hours before study day

Substance abuse, assessed by the investigator

Consummation of analgesics within 3 days before study

day

Consummation of antihistamines within 48 hours before

study day

Consummation of antidepressant medication within 30

days before the study day

Consummation of prescription medicine within 30 days

before the study day

Consummation of coffee or caffeine within 24 hours before

study day.

Neurological illnesses

Chronic pain

Psychiatric diagnoses

Eczema, wounds or sunburns on the sites of stimulation

Body Mass Index of >30 kg/m2 or <18 kg/m2.

Unwilling to receive information regarding potential

pathological findings in relation to the MRI.

Any kind of trauma resulting in pain and administration of

analgesics in the period between pain testing and MRI

scan.

Head trauma in the period between the pain testing and

the MRI.

Contraindications to MRI (claustrophobia, pacemaker

implant, artificial heart valve, cochlear/stapes prosthetics,

irremovable insulin pump, neuro-stimulator, metal from

previous surgery, metallic foreign objects, catheters,

shunts, draining tubes, and surgical procedures within the

last 6 weeks (subjected to individual evaluation)).

Abbreviations: MRI, Magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0201642.t001
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to the Desikan-Killiany cortical atlas [33]. To avoid possible confounding due to inter-partici-

pant head size differences, all volumes were adjusted for intracranial volume using a method

based on the analysis of covariance approach outlined by Raz et al. [34]. All volumes were

extracted to a spread sheet for separate data analysis.

Statistical analyses

Individual levels of secondary hyperalgesia, HPDT, p-TS VAS-max, and p-TS VAS-AUC was

obtained as Estimated Best Linear Unbiased Predictors (EBLUPS) [25].

Primary analysis. To adequately estimate inter-individual differences in secondary hyper-

algesia areas the area of secondary hyperalgesia was adjusted for body surface area. Individual

body surface areas were calculated using the Mosteller formula [35]. The association between

the volume of the left and right caudate nucleus and the magnitude of the secondary hyperal-

gesia area was estimated by multiple linear regression. The ability to predict the size of the sec-

ondary hyperalgesia area by measurement of the caudate nuclei volume was quantified by R2.

P-values were adjusted for multiple testing using the single step method [36].

Secondary analyses. The association between the magnitude of the secondary hyperalge-

sia area and the volume of the cortical and subcortical brain structures relevant for pain pro-

cessing (primary somatosensory cortex, anterior and mid cingulate cortex, putamen,

accumbens nucleus, globus pallidus, insula and the cerebellum) was estimated by multiple lin-

ear regression. Model reduction was performed by backwards elimination with a 5% cut-off

level.

Exploratory analyses. The association between the volume of the left and right caudate

nucleus and HPDT, p-TS VAS-max, p-TS VAS-AUC, PCS and HADS respectively was evalu-

ated per exploratory outcome by multiple linear regression. The findings were adjusted for

multiple testing using the single step method [36].

Possible neuroanatomical differences between participants displaying a small area of sec-

ondary hyperalgesia (lower quartile) and participants displaying a large area of secondary

hyperalgesia (upper quartile) were estimated using unpaired t-test. The findings were adjusted

for multiple testing using the single step method [36].

Sensitivity analyses. Four sensitivity analyses were performed to assess the robustness of

the findings.

In the first sensitivity analysis further adjustments by age, weight, BMI, and MAP were per-

formed. To adjust for hand-dominance a second sensitivity analysis were performed where

only right-handed participants were included. To adjust for difference in ethnicity a third sen-

sitivity analysis where performed where only ethnic Scandinavians were included. To evaluate

the impact of individual body surface, we conducted a fourth sensitivity analysis where we did

not adjust for body surface area.

Post-hoc analyses. A post-hoc analysis was conducted to investigate the association

between the area of secondary hyperalgesia and brain structures not included in the per-proto-

col analyses, but with a possible relevance for pain processing. Thus, the association between

the magnitude of the secondary hyperalgesia area and the volume of the left and right amyg-

dala, hippocampus, and thalamus were estimated by multiple linear regression. Moreover,

when comparing participants with a small and large area of secondary hyperalgesia possible

differences in the volume of these three structures were estimated using unpaired t-test. P-val-

ues were adjusted for multiple testing using the single step method; however, P-values in the

per-protocol planned analyses were not adjusted further by inclusion of the additional brain

structures in the post-hoc analysis.

P-values corresponded to Wald-tests and P<0.05 were evaluated as significant.
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All statistical analyses that were not computed by the MRI software were calculated using

the open-source statistical programming environment R (R Core Team (2014). (R: A language

and environment for statistical computing. R Foundation for Statistical Computing, Vienna,

Austria. URL http://www.R-project.org/).

Results

121 healthy participants were included in the study. All participants completed the MRI-scans,

but following clinical review, 3 participants were excluded due to suspected pathological find-

ings. Thus, 118 participants were included in the final analysis (Fig 2). Of the 118 included par-

ticipants, 10 were left-handed, and 15 had one or more parents with non-Scandinavian

ethnicity. The median interval between the completion of the preceding study session with

pain testing and the MRI scan was 17 days (interquartile range (IQR) 16–18).

The median size of the secondary hyperalgesia area was 448 cm2 (IQR 346–528) with a

range of 135–789 cm2 (Table 2).

Basic characteristics for the 118 participants and evoked pain results extracted from the pre-

ceding study session are displayed in Table 2. No adverse or serious adverse events were

reported.

Fig 2. Flowchart of included study participants. 121 participants were assessed for eligibility and included in the

study. 3 participants were excluded due to pathological findings following magnetic resonance imaging (MRI), and

consequently 118 participants were included in the final analysis.

https://doi.org/10.1371/journal.pone.0201642.g002
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Secondary hyperalgesia and caudate nuclei

We found no significant associations between the volume of the right and left caudate nucleus

and the size of the area of secondary hyperalgesia (right hemisphere, single-step adjusted

p = 0.13, left hemisphere, single-step adjusted p = 0.12). The adjusted R2 was estimated to

0.0068, and our regression analyses demonstrated that a one-mm3 increase in the volume of

the right caudate nucleus resulted in an estimated increase of 0.103 cm2 in secondary hyperal-

gesia area (with a family-wise adjusted 95% confidence interval (95% CI) of (-0.028 to 0.233)).

Likewise, a one-mm3 increase in the volume of the left caudate nucleus resulted in an esti-

mated decrease of -0.107 cm2 in secondary hyperalgesia area (95% CI (-0.239 to 0.025))

(Fig 3).

Secondary hyperalgesia and cortical and subcortical areas

We found no significant association between the size of the area of secondary hyperalgesia,

and the volume of the primary somatosensory cortex (right hemisphere p = 0.11, left hemi-

sphere p = 0.76), anterior cingulate cortex (right p = 0.33, left p = 0.82) and mid cingulate cor-

tex (right p = 0.26, left p = 0.91), putamen (right p = 0.29, left p = 0.05), nucleus accumbens

(right p = 0.27, left p = 0.5), globus pallidus (right p = 0.35, left p = 0.48), insula (right p = 0.28,

Table 2. Basic characteristics, pain testing results and psychological test results of the 118 participants included

in the analysis.

Variable Median (IQR) Range (min-max)

Age (years) 22 (20–24) 18–33

Height (m) 1.84 (1.79–1.88) 1.68–2.03

Weight (kg) 76.8 (70.0–84.8) 57–110

BMI (m2/kg) 22.82 (21.02–24.51) 18.12–28.63

MAP (mm Hg) 90 (84–96) 73–117

Heart rate (bpm) 64 (58–70) 46–97

Pain testing results

Area of secondary hyperalgesia (cm2) 448 (346–526) 135–789

HPDT (˚C) 45.57 (43.78–46.60) 38.70–51.01

p-TS VAS-max (mm) 33.5 (18.79–53.41) 2.41–95.99

p-TS VAS-AUC 1151 (648–1850) 83–4456

Psychological test results

PCS-helplessness 4 (2–6.25) 0–17

PCS-rumination 5 (3–8) 0–12

PCS-magnification 3 (1–4) 0–10

PCS-total 12 (7–17) 1–31

HADS-anxiety 4 (2–6) 0–13

HADS-depression 1 (1–3) 0–16

HADS-total 6 (3–8.25) 0–21

All medians and ranges of the area of secondary hyperalgesia, heat pain detection thresholds and pain during thermal

stimulation have been estimated by calculating the estimated best linear unbiased predictors (EBLUPS). Test results

of PCS and HADS were extracted following completion of all MRI-scans.

Abbreviations: IQR, Interquartile range; BMI, body mass index; BPM, Beats per minute; MAP, mean arterial

pressure; HPDT, heat pain detection threshold; p-TS, pain during thermal stimulation; VAS-max, maximum visual

analogue scale; VAS-AUC, visual analogue scale area under the curve; PCS, Pain Catastrophizing Scale; HADS,

Hospital Anxiety and Depression Scale; IQR.

https://doi.org/10.1371/journal.pone.0201642.t002
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left p = 0.08) or the cerebellum’s white matter (right p = 0.44, left p = 0.64) and cortex (right

p = 0.62, left p = 0.24) (Figs 4–6).

In the post-hoc analyses we found no significant associations between the size of the sec-

ondary hyperalgesia area and the volume of the amygdala (right p = 0.96, left p = 1), hippocam-

pus (right p = 0.99, left p = 1), and thalamus (right p = 0.96, left p = 0.96).

Caudate nuclei and pain testing results

We found no significant associations between the volume of the right and left caudate nuclei

and HPDT (right caudate nucleus p = 1, left caudate nucleus p = 1), p-TS VAS-max (right

p = 1, left p = 1) or p-TS VAS-AUC (right p = 1, left p = 1).

Caudate nuclei and Hospital Anxiety and Depression Scale (HADS) and

Pain Catastrophizing Scale (PCS)

We found no significant associations between PCS and the volume of the caudate nuclei (right

caudate nuclei p = 0.96, left caudate nuclei p = 0.94) or HADS and the caudate nuclei (right

p = 0.26, left p = 0.24) score.

Small vs. Large area of secondary hyperalgesia

Following stratification based on areas of secondary hyperalgesia, the median area size in the

groups including the lower (N = 29) and upper quartile (N = 29) was 261 cm2 (IQR 203–319)

and 579 cm2 (IQR 516–629) respectively (Table 3).

When comparing participants with a small area of secondary hyperalgesia (lower quartile,

N = 29) vs. participants with a large area (upper quartile, N = 29) we found no significant dif-

ferences in the volumes of the caudate nucleus (right p = 1, left p = 1) (Fig 7), the primary

somatosensory cortex (right p = 0.91, left p = 1), anterior cingulate cortex (right p = 0.991, left

Fig 3. Associations between the area of secondary hyperalgesia and the volume of the caudate nuclei. Scatter plot

of the volume of the right (red dots) and left (blue triangles) caudate nucleus and the corresponding area of secondary

hyperalgesia of each included participant. Individual volumes of the caudate nuclei were adjusted for intracranial

volume, and individual areas of secondary hyperalgesia were adjusted for body surface area. Regression lines

demonstrate no significant association between area of secondary hyperalgesia and the volume of the right and left

caudate nucleus (right hemisphere, p = 0.12, left hemisphere, p = 0.13).

https://doi.org/10.1371/journal.pone.0201642.g003
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Fig 4. Associations between the size of the secondary hyperalgesia area and the volume of the primary

somatosensory cortex, mid-, and anterior cingulate cortex. Scatter plots of individual volume measurements of the

brain structures belonging to the right hemisphere (red dots) and left hemisphere (blue triangles). Volumes of

individual brain structures were adjusted for intracranial volume, and individual areas of secondary hyperalgesia were

adjusted for body surface area. Red and blue regression lines and p-values�0.05 demonstrate no significant
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p = 1) and mid cingulate cortex (right p = 1, left p = 1), putamen (right p = 1, left p = 0.75),

nucleus accumbens (right p = 1, left p = 0.98), globus pallidus (right p = 1, left p = 1), insula

(right p = 1, left p = 0.93),or the cerebellum’s white matter (right p = 1, left p = 1) and cortex

(right p = 0.98, left p = 1).

Likewise, in the post-hoc analyses we did not detect any significant differences in volumes

of the amygdala (right p = 1, left p = 0.99), hippocampus (right p = 0.98, left p = 1) and thala-

mus (right p = 0.89, left p = 0.99) when comparing participants with a small vs. large area of

secondary hyperalgesia.

Sensitivity analyses

Adjustment of age, weight, BMI and MAP did not demonstrate different results when compar-

ing to our primary analysis. Secondly, we found that exclusion of left-handed participants or

participants with non-Scandinavian ethnicity did not change the results markedly. Lastly,

applying secondary hyperalgesia areas without adjusting for body surface area did not change

the results markedly.

Discussion

The major question addressed by this study is whether differences in the propensity to develop

secondary hyperalgesia and thus central sensitization are related to differences in the volume

of brain structures in healthy volunteers.

We found that phenotypic expression of secondary hyperalgesia was not associated with

differences in the volume of the caudate nuclei, nor was it associated with differences in the

volumes of the primary somatosensory cortex, anterior and mid cingulate cortex, putamen,

nucleus accumbens, globus pallidus, insula, cerebellum, amygdala, hippocampus and

thalamus.

The occurrence of pain is dependent on both peripheral mechanisms and the excitability of

the central nervous system. Sensitization of the central nervous system is characterized by

enhanced responsiveness of nociceptive neurons to normal or subthreshold afferent inputs

and is believed to play an important role in various pain conditions such as osteoarthritis,

fibromyalgia, headache and neuropathic pain [1, 2].

Even though central sensitization was characterized more than three decades ago, its patho-

physiology still remains elusive. It is believed that alterations in synaptic efficacy, membrane

excitability, transmission inhibition, as well as changes in microglia, astrocytes, and gene tran-

scription leads to the changes in functional properties that are characteristic for central sensiti-

zation [1, 2]. Clinically, the effects of central sensitization can be observed as enhanced

temporal summation, allodynia, hyperalgesia, and after-sensations (perception of a stimulus

after the stimulus has been terminated) [2]. One essential feature of central sensitization is sec-

ondary hyperalgesia, i.e. expansion of receptive fields enabling input from non-injured tissue

to be perceived as painful [1].

Previous studies have indicated a link between the magnitude of secondary hyperalgesia

area and persistent pain. Patients suffering from fibromyalgia or rheumatoid arthritis display

larger areas of secondary hyperalgesia compared to healthy individuals [37, 38]. Moreover, fol-

lowing iliac crest bone harvest [39] and after abdominal surgery [40, 41] and thoracotomy

[42], a correlation was demonstrated between increasing size of secondary hyperalgesia area

association between the size of the secondary hyperalgesia area and the volume of the primary somatosensory cortex,

the mid- and anterior cingulate cortex.

https://doi.org/10.1371/journal.pone.0201642.g004
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Fig 5. Associations between the size of the secondary hyperalgesia area and the volume of the accumbens nucleus,

insula, and the putamen. Scatter plots of individual volume measurements of the brain structures belonging to the

right hemisphere (red dots) and left hemisphere (blue triangles). Volumes of individual brain structures were adjusted

for intracranial volume, and individual areas of secondary hyperalgesia were adjusted for body surface area. Red and

blue regression lines and p-values�0.05 demonstrate no significant association between the size of the secondary

hyperalgesia area and the volume of the accumbens nucleus, insula and the putamen.

https://doi.org/10.1371/journal.pone.0201642.g005
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Fig 6. Associations between the size of the secondary hyperalgesia area and the volume of the globus pallidus, the

cerebellum, and the cortex of the cerebellum. Scatter plots of individual volume measurements of the brain

structures belonging to the right hemisphere (red dots) and left hemisphere (blue triangles). Volumes of individual

brain structures were adjusted for intracranial volume, and individual areas of secondary hyperalgesia were adjusted

for body surface area. Red and blue regression lines and p-values�0.05 demonstrate no significant association

between the size of the secondary hyperalgesia area and the volume of the globus pallidus and the cerebellum.

https://doi.org/10.1371/journal.pone.0201642.g006
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and the development of persistent pain. Interestingly, no correlation was found between the

magnitude of secondary hyperalgesia and surgical characteristics (length of incision, volume

of deep tissue trauma and nerve lesion severity), which suggests that the size of the secondary

Table 3. Results from pain testing and psychological testing of the upper and lower quartile based on magnitude

of secondary hyperalgesia area adjusted for body surface.

Characteristic Small area (lower quartile) Large area (upper quartile)

Number of participants (n) 29 29

Area of secondary hyperalgesia (cm2) 261 (203–319) 579 (516–629)

HPDT (˚C) 46.32 (45.56–47.11) 43.34 (41.93–44.59)

p-TS VAS-max (mm) 28.15 (17.03–41.56) 49.44 (26.74–70.61)

p-TS VAS-AUC (mm2) 1002.46 (565.96–1407.50) 1719.7 (991.2–2801.0)

PCS-helplessness 3 (1.25–6.5) 4 (2.25–6.75)

PCS-rumination 5 (3–7) 5 (4–7)

PCS-magnification 2.5 (1–4) 2.5 (1–4)

PCS-total 11 (6.25–16.75) 12.5 (9–16.75)

HADS-anxiety 3 (2–6) 4.5 (3–6.75)

HADS-depression 1 (0–2) 2 (1–4)

HADS-total 4 (2.25–7.5) 7 (4.25–9)

Numbers are reported in median and interquartile ranges.

All medians and ranges of area of secondary hyperalgesia, heat pain detection thresholds and pain during thermal

stimulation have been estimated by calculating the estimated best linear unbiased predictors (EBLUPS).

Abbreviations: IQR, interquartile range; HPDT, heat pain detection threshold; p-TS, pain during thermal

stimulation; VAS-max, maximum visual analogue scale; VAS-AUC, visual analogue scale area under the curve; min,

minimum; max, maximum; PCS, Pain Catastrophizing Scale; HADS, Hospital Anxiety and Depression Scale.

https://doi.org/10.1371/journal.pone.0201642.t003

Fig 7. Volumes of caudate nuclei when comparing participants with a small versus large area of secondary

hyperalgesia. Boxplot of the right (dots) and the left (triangles) volumes of the caudate nuclei corresponding to the

participants with small (lower quartile) and large (upper quartile) areas of secondary hyperalgesia respectively. Points

correspond to individual volume measurements, the thick horizontal line corresponds to median volume of the

caudate nuclei, and whiskers indicate borders of 1.5 times the upper or lower quartile. There was no significant

difference between the groups (small vs large areas of secondary hyperalgesia) regarding the volume of the caudate

nucleus in either the left (p = 1) or the right (p = 1) hemisphere.

https://doi.org/10.1371/journal.pone.0201642.g007
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hyperalgesia area reflects individual predispositions to develop central sensitization [39]. One

study found no correlation between pre-surgical areas of secondary hyperalgesia and postopera-

tive pain following arthroscopy [43]. However, in this study secondary hyperalgesia was

assessed to predict pain 1–10 days postoperatively and not to predict persistent or chronic pain.

In the present study we used high-resolution MRI at 3-Tesla to investigate if volume esti-

mates of brain structures involved in pain processing would correlate to the area of secondary

hyperalgesia induced by a thermal stimulus. MRI permits precision measurement and detec-

tion of minute differences in brain structure [44, 45]. We found no significant association

between areas of secondary hyperalgesia and the volume of the caudate nuclei. This is empha-

sized by the estimated R2, indicating that only 0.0068% of the variation of in secondary hyper-

algesia area is explained by the volume of the caudate nuclei. Moreover, we found no

significant associations between heat pain detection thresholds or pain during thermal stimu-

lation and the volume of the caudate nuclei, indicating that cutaneous heat pain sensitivity is

also not related to the volume of the caudate nuclei. Finally, we found no significant associa-

tions between the area of secondary hyperalgesia and the volume of any other pain relevant

brain structures.

Our findings indicate that the predisposition for central sensitization, assessed as secondary

hyperalgesia area, is not related to brain structure volume, and that individual levels of central

sensitization are not determined by cortical or subcortical structural differences.

In contrast, a previous exploratory MRI study reported a correlation between the volume of

the caudate nuclei and the area of secondary hyperalgesia [13]. In both the present and the for-

mer study, the neuroanatomy of healthy participants was examined by 3-Tesla MRI. However,

there are important differences between the two studies: Firstly, as opposed to the former

study, we examined predefined anatomical areas of interest (brain structures related to pain

processing [21, 22]) and corrected our data for total body surface in the analysis of the present

data. Secondly, in the present study we included a high number of healthy male participants

(N = 121), without prior knowledge of their individual areas of secondary hyperalgesia, as

compared to inclusion of fewer participants of both gender (N = 40) based on the magnitude

of the secondary hyperalgesia area (and with a disproportionally higher number of females in

one group) in the study by Asghar et al. [13]. The difference in method of inclusion is espe-

cially important since it may have contributed significantly to the differences in results. Inclu-

sion based on area of secondary hyperalgesia increases the inter-participant differences in

development of secondary hyperalgesia, and may produce more visible results; however we

believe that our approach in the current study is more robust since it is strictly driven by the

hypothesis, and not data driven. Nonetheless, this may have resulted in a lower inclusion of

participants with small or large areas of secondary hyperalgesia and increased the risk of type 2

errors.

We performed the MRI scans on average 17 days after the pain testing to avoid carry-over

effects. It has been demonstrated that areas of secondary hyperalgesia following BTS remain

stable over a period of minimum 4 weeks [12]. This allowed for investigation without the risk

of recording neuroanatomical changes due to recent or repetitive pain stimulations. We

included a large number of participants (n = 121) making this the largest MRI study of second-

ary hyperalgesia reported so far. There were no missing data and no protocol violations.

Moreover, we based our primary and secondary outcome measures on known cortical and

subcortical brain structures relevant for pain and central sensitization [13, 21, 22]. We con-

ducted separate sensitivity analyses to test the robustness of our findings and did not find dif-

ferent results compared to our primary analysis. Finally, based on the high number of

included participants combined with a stringent methodological approach we believe our find-

ings to be robust and of high quality.
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Studies of healthy participants have indicated that reduced grey matter volume of pain rele-

vant structures is correlated with increased visceral sensitivity [46] as well as increased heat

pain sensitivity [47]. Results from the present study are not coherent with those findings. How-

ever, heat pain detection thresholds have been demonstrated only to offer moderate explana-

tion of the inter-individual variations in secondary hyperalgesia [25]; suggesting that

cutaneous heat pain sensitivity and areas of secondary hyperalgesia represent two distinctively

different pain entities. Moreover, to the authors’ knowledge, no studies have investigated the

association between visceral sensitivity and secondary hyperalgesia areas.

Several studies of chronic pain patients have identified neuroanatomical correlates of

chronic pain [18, 20, 48] and reported reduced grey matter volumes in multiple pain relevant

brain structures. However, comparisons between structural abnormalities found in pain free

healthy individuals, and chronic pain patients have limited value, since evidence suggest that

structural grey matter abnormalities observed in chronic pain patients are a result of experi-

ence-dependent neuronal plasticity, and that these abnormalities are reversible when the pain

stimulus is terminated [48–51]. In support of this, a study of healthy individuals reported that

the initial MRI-scans did not show structural differences between individuals characterized

with high and low pain sensitivity, but following repetitive noxious stimulation the high pain

sensitizers were more prone to develop grey matter density reductions [44]. This suggests that

healthy individuals with high innate pain sensitivity are more prone to develop structural

abnormalities comparable to chronic pain patients, but also that pain sensitivity is not influ-

enced by the structural anatomy of the brain.

The present study has some limitations. Firstly, we applied strict inclusion criteria resulting

in a homogenous population of healthy male participants. Inclusion of both sexes would have

introduced several variations such as possible neuroanatomical differences related to sex [52,

53], hormonal influence of the menstrual cycle on MRI findings [54, 55], and possible interac-

tion between the menstrual cycle and pain responses [56]. Moreover, the BTS method has only

been validated in healthy male volunteers [12]. Secondly, due to limitations in the software

and the ancillary anatomical atlas we were not able to segment the secondary somatosensory

cortex, the supplementary motor area, the substantia nigra and the subthalamic nucleus as we

had specified in our published study protocol [24]. Finally, we included participants regardless

of hand-dominance and ethnicity. MRI-studies often include right-handed participants only,

additionally, ethnicity may influence pain thresholds [57]. Our sensitivity analyses, however,

did not show any differences in findings when excluding left-handed or non-Scandinavian

participants illustrating the robustness of our results.

In conclusion, we did not find significant associations between the area of secondary hyper-

algesia induced by a thermal injury, and the volume of the caudate nuclei or any other prede-

fined brain structures involved in pain processing, indicating that the propensity to develop

central sensitization is not correlated to the volume of pain related brain structures.

We suggest that future studies of contributing factors to central sensitization should include

investigations of the functional connectivity of the CNS, the endogenous opioid system, rele-

vant molecular mechanisms, and psychological factors. Potential findings in future studies

may shed light on the etiology of central sensitization and ultimately provide us with novel

pharmaceutical targets in the treatment of acute and chronic pain.
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