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Abstract 

Background and objectives  

Despite great statistical advances in meta-analysis methodology, most published meta-analyses 

make use of out-dated statistical methods and authors are unaware of the shortcomings 

associated with the widely employed methods. There is a need for statistical contributions to 

meta-analysis where: 1) improvements to current statistical practice in meta-analysis are 

conveyed at the level that most systematic review authors will be able to understand; and where: 

2) current statistical methods that are widely applied in meta-analytic practice undergo thorough 

testing and examination. The objective of this thesis is to address some of this demand.     

Methods 

Four studies were conducted that would each meet one or both of the objectives. Simulation was 

used to explore the number of patients and events required to limit the risk of overestimation of 

intervention effects to ‘acceptable’ levels. Empirical assessment was used to explore the 

performance of the popular measure of heterogeneity, I
2
, and its associated 95% confidence 

intervals (CIs) as evidence accumulates. Empirical assessment was also used to compare 

inferential agreement between the widely used DerSimonian-Laird random-effects model and 

four alternative models. Lastly, a narrative review was undertaken to identify and appraise 

available methods for combining health related quality of life (HRQL) outcomes.  

Results and conclusion 

The information required to limit the risk of overestimation of intervention effects is typically 

close to what is known as the optimal information size (OIS, i.e., the required meta-analysis 

sample size). I
2
 estimates fluctuate considerably in meta-analyses with less than 15 trials and 500 

events; their 95% confidence intervals provide desired coverage. The choice of random-effects 
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has ignorable impact on the inferences about the intervention effect, but not on inferences about 

the degree of heterogeneity. Many approaches are available for pooling HRQL outcomes. 

Recommendations are provided to enhance interpretability. Overall, each manuscript met at least 

one thesis objective.  
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Preface 

This thesis is a “sandwich thesis” consisting of four individual manuscripts as well as two 

additional analyses that further link the concepts and findings of these four manuscripts. At the 

time of writing (Oct 18 – 2011) two of the four individual manuscripts (chapters 2 and 5) have 

been published/accepted for publication in peer reviewed journals, and the remaining two 

(chapters 3 and 4) have been accepted for revision in peer reviewed journals. Kristian Thorlund’s 

contributions to all the manuscripts and the additional analyses include: developing the research 

ideas and research questions, designing the studies, writing the protocol and analysis plan, 

performing the data extraction, conducting all statistical analyses, writing up all manuscripts, 

submitting the manuscripts; and responding to reviewers’ comments. The work in this thesis was 

conducted between May 2009 and October 2011. 
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Chapter 1: Introduction 

 

Meta-analysis and systematic reviews have become widely accepted and used in medical 

research over the past three decades.
1,2

 Many methodological and practical challenges of meta-

analysis and systematic reviews have been addressed in a substantial number of research studies 

and guidelines over the past years.
2-4

 To a large extent, the increased acceptance of meta-analysis 

and systematic reviews as a valid scientific discipline may be attributed to these extensive 

methodological research efforts. Several tools and guidelines have been proposed and developed 

for bias risk assessment and reporting of results in systematic reviews, and many are now widely 

applied.
3-6

 Somewhat surprising, however, the applied statistical methodology in the majority of 

published meta-analyses remains overly simple and out-dated, despite the fact that several 

improvements to the currently employed methods have been proposed and tested.
2
 This seeming 

disproportionality between research efforts and advances in practice may in part be explained by 

the fact that statistics is extremely challenging to disseminate to the clinical audience. 

Considering that most systematic reviews, due to limited resources, do not have a statistician (or 

someone with adequate proficiency in statistics) on the author team, it seems crucial to ensure 

widespread dissemination of shortcomings associated with the currently employed (and out-

dated) methods as well as the newer and relevant proposed statistical advances in meta-analysis. 

 

Problems with advancing statistical practice in meta-analysis 

Meta-epidemiological research, so far, has identified and demonstrated the importance of several 

determinants of the validity, reliability and interpretability of research findings in meta-analyses 

and systematic reviews. Most commonly, they have demonstrated associations between 
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overestimation of intervention effects and various sources of bias (methodological bias, 

publication bias, outcome reporting bias, etc.) and design features (use of composite endpoints, 

early stopping for benefit, etc.) among studies with inconsistent results.
7-14

 Following the 

publication of such meta-epidemiological studies, experts have typically joined forces and 

developed tools and guidelines for assessing the quality of the evidence accordingly. Several 

statistical advances have also been made in meta-analysis, but most of these have rarely been 

applied in practice. The limited adoption of statistical advances in meta-analysis may likely be 

due to the sources through which they are being disseminated. That is, many statistical advances 

in meta-analysis have been published in advanced statistical and epidemiological journals like 

Statistics in Medicine and Journal of Clinical Epidemiology.
2
 In such journals, manuscripts are 

often written in a highly technical language. While this is beneficial for researchers who want to 

get an in-depth understanding of the topic, it does little in educating the ‘common’ systematic 

review author. In addition, one could argue that many published meta-analysis statistical 

methodology papers have in fact devised methods for tackling data analysis problems which may 

not be relevant until 5, 10, or even 15 years from now (note: this thesis was submitted in July 

2011). For example, proposing a hybrid of meta-regression and multiple treatment comparison 

(MTC) meta-analysis, although statistically novel, may not be relevant until the systematic 

review community has solved the issues of combining MTC data without MTC covariates.
15

 

Thus, it is not surprising that so many statistical advances in meta-analysis have not yet reached 

the clinical audience.   
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Predictors of widespread dissemination of statistical advances 

Widespread dissemination and implementation of statistical advances in meta-analysis are just as 

important as widespread dissemination and implementation of other issues in meta-analysis. In 

brief, statistical issues in meta-analysis comprise the following: type I error and power, bias and 

precision (random error) associated with the estimation of all parameters and statistics being 

considered, and the appropriateness of the employed meta-analytic (statistical) model(s). Some 

examples of statistical advances in meta-analysis that have enjoyed widespread dissemination 

and implementation are the I
2
 measure of the degree (percentage) of heterogeneity as well as 

indirect and multiple comparison methods. Both of these methods met a pressing demand in the 

meta-analysis and systematic review community. Each method provides relatively simple 

answers to complex problems that occur frequently in meta-analysis and their concepts are easily 

understood. Presumably, their successes can also partially be attributed to the degree to which 

they were disseminated. For the I
2
 measure, the authors not only published a methods paper in 

Statistics in Medicine.
16

 They also published a ‘light’ version in the British Medical Journal and 

described the method in the Cochrane Handbook.
4,17

 Perhaps most importantly, the wide use of I
2
 

can be attributed to the fact that it was made an integral part of the Review Manager (RevMan) 

software used for all Cochrane systematic reviews and presumably for many systematic reviews 

published outside the Cochrane Library.
18

 For indirect and multiple comparison methods, the 

methods seemed to catch on as ‘the new hot thing’ after a series of events, such as emphasis on 

these methods during recent Cochrane Collaboration colloquia, publication of multiple treatment 

comparisons on high impact topics, and a number of meta-epidemiological studies and 

educational papers.
19-34

 Likewise, free user-friendly software for indirect comparisons has been 

released and several statistical code examples (e.g., WinBUGS code) have been published.
35

 It 



4 

 

therefore seems that the recipe for wide dissemination of statistical advances in meta-analysis 

must include at least some of the elements in the above examples.  

 

Issues with validation of widely used statistical methods in meta-analysis 

While many statistical advances in meta-analysis do not enjoy widespread dissemination and 

implementation, ironically, those which do will typically not have undergone sufficient testing. 

The I
2
 measure, for example, was implemented in RevMan at a time where only a few 

uncomprehensive simulations had suggested the measure had acceptable statistical 

properties.
16,36

 More recently, some evidence has emerged to cast light over interpretational 

challenges associated with use of the I
2
 measure.

37-41
  

 

Thesis objective      

There is a need for statistical contributions to meta-analysis where:  

1) Improvements to current statistical practice in meta-analysis are conveyed at the level 

that most systematic review authors will be able to understand; and where:  

2) Current statistical methods that are widely applied in meta-analytic practice undergo 

thorough testing and examination.  

 

Of course, the research efforts needed to fill this demand would be substantial. The objective of 

this PhD thesis is to address some of this demand.  
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Overview of approaches to achieving the objective 

This PhD thesis includes four separate research papers. Each paper deals with properties of 

currently applied methods for which their presumed merits have not been properly confirmed, or 

for which their statistical shortcomings have not been widely disseminated to the systematic 

review community. In case of the latter, alternatives and natural additions to the investigated 

methods are also studied and their performances are contrasted with the performance of the 

currently employed methods. For the design of each of the studies included in the PhD thesis, 

considerable attention was given to the need for simple performance measures which a clinical 

audience with basic biostatistics proficiency would be able to understand. This was done to meet 

objective 1, that is, to bridge some of the gaps between statistics in meta-analysis and the general 

systematic review audience. All papers deal with challenges in ‘pair wise’ meta-analysis, i.e., 

conventional meta-analysis comparing two interventions.    

 

Summary of chapters 

Chapter 2 deals with the risk of overestimation of intervention effects in binary meta-analysis 

due to imprecision (random error). It has previously been demonstrated empirically that 

imprecise meta-analyses (i.e. meta-analyses including a limited number of patients and events) 

are prone to yield large intervention effects estimates, and that such estimates tend to dissipate as 

more evidence is accumulated.
42-45

 Such ‘early’ overestimates can particularly be compelling 

when backed up by a p-value smaller than 0.05. The GRADE working group and other authors 

have encouraged the use of the optimal information size (OIS, i.e. the required meta-analysis 

sample size) to assess the reliability of intervention effect estimates.
6,44,46-53

 The OIS is being 

used increasingly in meta-analysis. Although the immediate statistical purpose of the OIS is to 
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provide a yardstick for the level of evidence which is required to achieve the desired type I error 

and type II error (or power) to detect some realistic intervention effect, authors of 

methodological papers and members of the GRADE working group have suggested that 

surpassing the OIS also provides protection against overestimation due to random error.
6,53

 

Theoretically this claim seems plausible, but nevertheless still needs validation. The study 

presented in chapter 2 is a comprehensive simulation study that explores the magnitude and 

likelihood of overestimation due to random error in relation to the cumulative number of patients 

and events in a meta-analysis. The number of patients and events required to limit the risk of 

overestimation to ‘acceptable’ levels are derived for the explored meta-analysis scenarios, and 

these estimates are contrasted with matching OIS calculations. The study presented in chapter 2 

therefore serves to inform crucial unexplored issues of imprecision and use of OIS in meta-

analysis before these are disseminated more widely. 

 

Chapter 3 deals with the validity and reliability of the I
2
 measure as evidence accumulates. Since 

I
2
 became the most commonly used measure of heterogeneity in meta-analysis, a number of 

shortcomings and interpretational challenges associated with this measure have been 

identified.
37-41

 Theoretically, all of these shortcomings may impact the validity and reliability of 

I
2
 – especially when the evidence is limited. Much like the reliability of intervention effect 

estimates should be assessed in relation to some yardstick for adequate precision (like the OIS), 

I
2
 should likewise be interpreted according to the level of evidence and the degree of uncertainty 

which surrounds it. The study presented in chapter 3 reviews the various factors that may impact 

the reliability and validity of I
2
 as evidence accumulates (and particularly when evidence is 

sparse). The explanation of these factors caters to an audience with only basic knowledge of 
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statistical concepts. The performance of I
2
 is explored empirically in 16 binary outcome meta-

analyses with ‘sufficient’ evidence. This is done by plotting the cumulative I
2
 estimates in 

relation to the cumulative number of events and trials. Because it is hypothesized that I
2
 will 

incur substantial fluctuations over time, the performance of the 95% confidence intervals for I
2
 

over time is explored similarly. More specifically, it is assessed whether the 95% confidence 

intervals illustrate the appropriate degree of uncertainty associated with estimating I
2
 and protect 

against spurious inferences about the degree of heterogeneity in meta-analysis. The study 

presented in chapter 3 therefore serves to cast further light on crucial shortcomings of the I
2
 

measure and promote simple aids for more accurate and reliable interpretation of this measure. 

   

Chapter 4 challenges the widespread use of the conventional DerSimonian-Laird random-effects 

meta-analysis model when the included studies are heterogeneous. The only difference between 

the DerSimonian-Laird random-effects meta-analysis model and other ‘conventional setup’ 

random-effects meta-analysis models is the estimator which is used to estimate the between-

study variance. The DerSimonian-Laird model uses, not surprisingly, the DerSimonian-Laird 

estimator.
54

 Other models make use of other estimators.
55,56

 Many comprehensive simulations 

studies have demonstrated that the DerSimonian-Laird estimator tends to underestimate the 

between-study variance.
55-62

 When this occurs, the 95% confidence interval for the intervention 

effect estimate tends to become artificially narrow and heterogeneity estimates (e.g., I
2
) become 

artificially small. Simulation studies have also demonstrated that alternative estimators, in many 

cases, perform better than the DerSimonian-Laird estimator.
55-62

 Yet, these issues do not seem to 

have reached the systematic review community. The study presented in chapter 4 aims to test 

whether these issues are in fact problematic in practice. This is attained by comparing agreement 
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between the DerSimonian-Laird model and selected alternatives on measures of inference which 

all systematic review authors employ: the p-value for the intervention effect null hypothesis, 

95% confidence interval for the estimated intervention effect, and the percentage of 

heterogeneity (in this study, measures which are conceptually similar to I
2
 but specifically 

derived from the random-effects model in question). Agreement is assessed empirically for 920 

‘primary outcome’ Cochrane meta-analyses.  

 

Chapter 5 is the only one that deals with meta-analysis of continuous outcomes. Health related 

quality of life (HRQL) outcomes and patient reported outcomes (PROs) are becoming 

increasingly popular in clinical trials. Therefore, proper methods for combining such outcomes in 

meta-analysis are necessary.
63-66

 Similar HRQL and PRO constructs are typically measured with 

different instruments across trials, and so combining them in a meta-analysis necessitates some 

transformation to a uniform scale. Typically the standardized mean difference, in which mean 

differences are reported in standard deviation units, has been used.
4
 However, this method relies 

on standard deviations being comparable across trials (which is most often not the case). Further, 

in many areas of medicine, clinicians may find it difficult to interpret intervention effects in 

standard deviation units. The study presented in chapter 5 is a tutorial and review of 12 identified 

alternatives to the standardized mean difference. This review outlines the strengths and 

limitations associated with the identified methods, and explores their performance in two 

illustrative examples. Perhaps more importantly, the review provides simple recommendations 

based on a 2-step algorithm, about which method should be the preferred primary and 

complementary method for pooling and presenting continuous outcomes meta-analysis.   
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Chapter 6 presents some selected additional analyses that explore further links between chapters 

2, 3 and 4. First, I explore how the degree of heterogeneity evolves over time with the alternative 

random-effects models (between-trial variance estimators) considered in chapter 4. Second, I 

explore whether some of the inferential discrepancies between random-effects models, which are 

observed in chapter 4, are more likely to occur in meta-analyses with sparse evidence compared 

to meta-analysis close to or beyond their OIS. 

 

In chapter 7 (the discussion) the findings of chapters 2 to 6 are summarized. I discuss how well 

the manuscripts presented in chapters 2 to 5 meet the objectives of this thesis. I further discuss 

how well each of the manuscripts, when published, will aid in disseminating statistical methods 

currently not used (widely) in practice; as well as exploring the performance of widely used 

measures. 
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Abstract 

Background: 

Meta-analyses including a limited number of patients and events are prone to yield overestimated 

intervention effect estimates. While many assume bias is the cause of overestimation, theoretical 

considerations suggest that random error may be an equal or more frequent cause. The independent 

impact of random error on meta-analyzed intervention effects has not previously been explored. It has 

been suggested that surpassing the optimal information size (i.e., the required meta-analysis sample size) 

provides sufficient protection against overestimation due to random error, but this claim has not yet been 

validated.  

Methods: 

We simulated a comprehensive array of meta-analysis scenarios where no intervention effect existed (i.e., 

relative risk reduction (RRR) = 0%) or where a small but possibly unimportant effect existed (RRR = 

10%). We constructed different scenarios by varying the control group risk, the degree of heterogeneity, 

and the distribution of trial sample sizes. For each scenario, we calculated the probability of observing 

overestimates of RRR > 20% and RRR > 30% for each cumulative 500 patients and 50 events. We 

calculated the cumulative number of patients and events required to reduce the probability of 

overestimation of intervention effect to 10%, 5%, and 1%. We calculated the optimal information size for 

each of the simulated scenarios and explored whether meta-analyses that surpassed their optimal 

information size had sufficient protection against overestimation of intervention effects due to random 

error.  

Results: 

The risk of overestimation of intervention effects was usually high when the number of patients and 

events was small and this risk decreased exponentially over time as the number of patients and events 

increased. The number of patients and events required to limit the risk of overestimation depended 

considerably on the underlying simulation settings. Surpassing the optimal information size generally 

provided sufficient protection against overestimation. 

Conclusions: 

Random errors are a frequent cause of overestimation of intervention effects in meta-analyses. Surpassing 

the optimal information size will provide sufficient protection against overestimation. 
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Introduction 

Systematic reviews and meta-analyses combining evidence from several high-quality 

randomized clinical trials (RCTs) are generally considered the highest level of evidence for 

effects of interventions.
1–3

 Many systematic reviews address questions important and pressing to 

a large group of patients and clinicians. Therefore, these analyses are often conducted at a stage 

when the evidence on a particular question is still limited. Such meta-analyses lack the precision 

(i.e., are underpowered) to establish realistic intervention effects with a high level of 

confidence.
4–11

  Yet, it is not infrequently that such preliminary meta-analyses yield apparently 

large intervention effect estimates which, if meeting the conventional criterion for statistical 

significance (i.e., p ≤ 0.05), can appear compelling.
4–11

 Empirical studies suggest that when more 

evidence is accumulated over time, many of these ‘early’ large apparent intervention effects turn 

out to be substantial overestimates.
4–6,12

 Meta-analysis authors often assume that time-lag, 

publication bias, methodological bias, or outcome reporting bias are the main cause(s) of early 

overestimation, but theoretical considerations suggest that lack of precision may be an equally or 

more frequent cause.
3–11,13

   

 

As authors and users of meta-analyses and systematic reviews, we wish to avoid the mistake of 

trusting spuriously large meta-analyzed intervention effects. Because precision (and power) is 

highly correlated with the cumulative number of patients and events, some authors have 

recommended that meta-analyzed intervention effect estimates should be interpreted in relation 

to the cumulative number of patients or events.
6–9,14–17

 In particular, a required or an optimal 

information size (OIS, analogous to a required sample size in a clinical trial) has been proposed 

for meta-analysis.
9,15–17

 While we find this proposal highly useful, the optimal information size 

does not provide insight into the degree and likelihood of overestimation of intervention effects 
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that one can expect at various preceding stages of a meta-analysis. Further, it is unknown 

whether conventional information size requirements (i.e., α = 5%, β = 10%, and plausible a 

priori assumptions about the intervention effect, control group risk, and degree of heterogeneity), 

provide sufficient protection against overestimation of meta-analyzed intervention effects caused 

by random errors (imprecision). The existing empirical studies on this topic are, unfortunately, 

limited by their respective sample sizes (the number of meta-analyses studied empirically), and 

thus, do not provide a reliable basis for assessing the expected degree and likelihood of 

overestimation at various stages evidence accumulation. Further, because the impact of bias 

(systematic error) is next to impossible to infer with certainty in individual meta-analyses, it is 

also difficult to isolate the degree to which random error alone (and not bias) causes 

overestimation in individual meta-analyses. The sole effect of random error on the meta-

analyzed intervention effect can, however, be accurately evaluated via simulation.  

 

To assess the degree and likelihood with which imprecision causes overestimation of 

intervention effects at various stages of a meta-analysis, we undertook a simulation study. We 

measured the probability of observing relative risk reduction estimates that could potentially 

represent important overestimations after every 500 or 200 patients and for every 50 or 20 events 

(depending on the simulation scenario). We explored how well conventional information size 

requirements protected against overestimation by comparing these with the number of patients 

and events required for reducing the probability of overestimation to ‘acceptable levels’ (i.e., 

10%, 5%, or 1%).  Our simulations cover a comprehensive array of scenarios that approximate 

common meta-analysis data sets and our tables and figures may readily aid systematic review 
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authors in assessing the risk of overestimation due to random error in their specific meta-

analysis. 

 

Methods 

Simulation framework 

We simulated binary meta-analysis data sets using a DerSimonian-Laird random-effects model 

framework.
3,18,19

 The statistical formulation for the random-effects model as well as the formula 

for the DerSimonian-Laird estimator for the between-trial variance are presented in the 

supporting information (Appendix S1).  We simulated meta-analysis scenarios based on assumed 

distributions and fixed, chosen values for the trial specific variables: the trial sample sizes, the 

control group risks, the ‘true’ intervention effect, and the degree of heterogeneity. We used two 

trial sample size distributions: one based on a survey of the Cochrane Heart Group meta-analyses 

on mortality (see supporting information Table S1 and Table S2) and one based on our 

subjective assessment of what constitutes a ‘common’ meta-analysis scenario. We used four 

different uniform distributions to sample the control group risk: 1% to 5% (representing ‘low’ 

control group risk), 5% to 15% (representing ‘moderately low’), 15% to 40% (representing 

‘moderate’), and 40% to 80% (representing ‘high’). We used three different values of the 

between-trial variance (referred to as τ2
 in the supporting information - Appendix S1) of the log 

relative risk to simulate different degrees of heterogeneity: 0.05, 0.15, and 0.25. Because our 

study objective was to investigate various aspects of overestimation of intervention effects, we 

used relative risk reduction (RRR) = 0% (no effect) and RRR = 10% (small but possibly 

unimportant effect) as the ‘true’ underlying intervention effects. In-depth rationale for the choice 

of the performed simulation scenarios is provided in appendix S2 in the supporting information. 
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Further, the technical details of our simulation approach are described in detail in Appendix S2 

in the supporting information.  

 

For each scenario, we simulated 20,000 meta-analysis data sets, and for each simulated meta-

analysis data set, we simulated 100 trials. Although meta-analysis data sets including this many 

trials are uncommon in practice, we were interested in estimating the risk of overestimation both 

in common as well as uncommon meta-analysis scenarios. Simulating 100 trials for each meta-

analysis data set allowed us to accurately estimate the risk of overestimation regardless of the 

cumulative number of patients and events.  Figure 1 presents a flowchart of the simulation and 

analysis structure. 

 

The optimal information size 

The optimal information size, OIS, for a binary outcome meta-analysis (also referred to as the 

required information size) is calculated as 

OIS = (4⋅(z1-α+ z1-β)
2⋅P⋅(1-P)/δ2

)⋅(1/(1-I
2
)) 

Where z1-α and z1-β are the (1-α)th and (1-β)th percentiles from the standard normal distribution, 

P is the average of the control group risk, PC, and intervention group risk, PE, δ 
is the difference 

between PC and PE, and I
2
 is the popular (heterogeneity) measure for the proportion variation in a 

meta-analysis explained by differences between trials rather than sampling error. (Note, I
2
 is 

typically reported as a percentage (e.g., I
2
 = 35%), but in the OIS formula above, I

2
 is a 

proportion (e.g., I
2
 = 0.35)). The OIS provides the required number of patients in a meta-analysis 

to ensure that the maximum type I error is no larger than α and the maximum type II error is no 
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larger than β when testing for statistical significance. The OIS can be converted to the required 

number of events by multiplying the required number of patients by P (assuming an 

approximately equal number of patients in the two groups). 

 

Analysis 

For each simulation scenario of 20,000 cumulative meta-analyses data sets, we recorded the 

DerSimonian-Laird random-effects model cumulative meta-analyzed RRR (1 minus the meta-

analyzed relative risk), the cumulative number of patients, and the cumulative number of events 

after each included trial. For each simulation set (i.e., true RRR = 0% and true RRR = 10%), we 

judged that RRR estimates larger than 20% and 30% could potentially represent important 

overestimates. At any given cumulative number of patients and events, we therefore calculated 

the proportion of simulated meta-analysis RRR that were larger than these thresholds.  

 

We assessed the degree and likelihood of overestimation at various stages of a meta-analysis. For 

each scenario, we plotted the proportion of overestimates (according to the two thresholds) in 

relation to the cumulative number of patients and events. For each plot, we divided the 

cumulative number of patients into intervals of 500 or 200 (depending on the scenario), and the 

cumulative number of events into intervals of 50 or 20 (depending on the scenario).  

 

We assessed how many patients and events were required to reduce the proportion of 

overestimates to acceptable levels, according to the two thresholds. We calculated the number of 

patients and events required to limit the probability of overestimation (according to the two 
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thresholds) by 10%, 5%, and 1% - each of which could potentially constitute an ‘acceptable’ risk 

of overestimation.  

 

We assessed the extent to which conventional information size requirements protect against 

overestimation. We calculated the optimal information sizes based on α = 5% and β = 20%, 

10%, or 5%, with assumed control group risks set to the averages of the four control group risk 

distributions used in the simulation (i.e., PC = 3.0%, PC = 10.0%, PC = 27.5%, or PC = 60.0%), 

powered to detect intervention effects of RRR = 30% or RRR = 20%, and with heterogeneity 

corrections of I
2
 = 0.00, I

2
 = 0.25, or I

2
 = 0.50 (corresponding to I

2
 = 0%, I

2
 = 25%, and I

2
 = 

50%). In total, 72 OIS estimates were calculated. We then compared the calculated information 

size requirements with the simulation results by matching OIS estimates with the scenarios 

where the underlying assumptions were similar. For example, the estimated probabilities of 

overestimation from the simulation based on a control group risk between 5% and 15% and tau
2
 

= 0.15 were compared to the information size requirements based on an assumption of a 10% 

control group risk and 25% heterogeneity (I
2
 = 0.25 = 25%). For the comparison of information 

size requirements and simulation results, we post hoc created three categories for the 

‘acceptability’ of the risk of overestimation: ‘good’, ‘very good’, and ‘excellent’. We defined 

‘good’ acceptability as the situation where the probability of observing an RRR > 20% was 

smaller than 10% and the probability of observing an RRR > 30% was smaller than 5%. We 

defined ‘very good’ acceptability as the situation where the probability of observing an RRR > 

20% was smaller than 5% and the probability of observing an RRR > 30% smaller than 1%. 

Lastly, we defined ‘excellent’ acceptability as the situation where the probability of observing an 

RRR > 20% was smaller than 1%. 
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Of note, we did not record the probability of underestimation (i.e., we took a one-sided 

approach). Thus, 50% is the maximum observable probability of overestimation of intervention 

effects, and our results should be interpreted accordingly. 

 

Results 

In most scenarios, the probability of overestimation was higher than 25% when the number of 

patients (or events) was small, but subsequently decreased exponentially (the x-axis is log scaled 

in figure 2, and in figures S1 to S12 in the supporting information). 

 

Figure 2 presents the probability of overestimation in relation to the cumulative number of 

patients and events for a selected simulation scenario: no true intervention effect (RRR = 0%), 

moderate control group event risk (uniform distribution from 5% to 15%), and moderate 

heterogeneity (between-trial variance τ
2
 = 0.15), and distribution of trials sizes based on our 

survey of the Cochrane Heart Group meta-analyses. Figures S1 to S12 in the supporting 

information present the probability of overestimation in relation to the cumulative number of 

patients and events for all simulation scenarios. 

 

The number of patients and events required for the probability of overestimation to drop below 

10%, 5%, and 1% in the simulated scenarios are presented in Table 1, and Tables S3 and S4 in 

the supporting information. Table 1 presents the scenarios where the distribution of trial sample 

sizes were based on our survey of the Cochrane Heart Group meta-analyses, and Tables S3 and 

S4 in the supporting information present the scenarios where the distribution of trial sample sizes 
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was based on our assessment of what we subjectively assessed constituted a ‘common’ meta-

analysis scenario.  

  

The number of patients and events required to limit the risk of overestimation depended on the 

threshold for overestimation (i.e., RRR = 20% or RRR = 30%) and all the considered simulation 

components: relative risk reduction, control group risk, heterogeneity, and trial size distribution. 

The larger the overestimation (i.e., the larger the difference between the meta-analyzed and the 

true RRR), the smaller the number of patients and events required to limit the risk of 

overestimation.  A larger number of patients was required to limit the risk of overestimation in 

the scenarios where the control group risk was low. Conversely, a smaller number of events was 

required to limit the risk of overestimation in the scenarios where the control group risk was low. 

The number of patients and events required to limit the risk of overestimation was generally 

smaller in scenarios when heterogeneity was set at the lowest level (τ
2
 = 0.05) than when it was 

set to the highest level (τ
2
 = 0.25). In contrast, in scenarios with the ‘common’ trial size 

distribution and with low control group risks (1-5%), the number of patients and events required 

was higher when heterogeneity was lowest. This reversed pattern was also observed in a few 

other isolated scenarios. 

 

Table 2 presents the calculated optimal information size for 72 different settings (see analysis 

section for more detail). Table 3 and 4 present the number of patients and events required to limit 

the risk of overestimation, grouped by control group risk and distribution of trial sample size. 

The calculated OIS are included in these tables for comparison. In scenarios with low control 

group risk (1%-5%), the risk of overestimation generally reached very good or excellent 
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acceptability before reaching optimal information sizes (based on 80% power or 90% power). In 

scenarios with moderately low control group risk (5% to 15%), good acceptability was 

commonly reached before or close to the OIS based on 80% power, whereas very good and 

sometimes excellent acceptability was reached before the OIS based on 90% power or 95% 

power. In scenarios with moderate control group risk (15% to 40%), good acceptability was 

reached before the OIS based on 80% power and very good acceptability was usually reached 

before the OIS based on 95% power. In scenarios with high control group risk (40% to 80%), 

good acceptable was often (but not always) reached before the OIS based on 95% power. Some 

exceptions were observed in all of the above generalizations when the heterogeneity was large 

(i.e., τ
2
 = 0.25).  

 

Discussion 

Our simulations provide valuable insight on the risk of overestimation of intervention effects in 

meta-analysis due to random errors over time. The risk of observing overestimated intervention 

effects due to random error at ‘early’ stages of a meta-analysis is substantial. The number of 

patients and events required to limit this risk depend considerably on each of the components 

considered in our simulation study: the degree of overestimation that is considered to be 

important, the underlying true effect, the control group risk, the degree of heterogeneity, and the 

distribution of trial sample sizes. However, the comparison of our simulation results with the 

approximately corresponding information size requirements demonstrated that upon reaching the 

OIS in a meta-analysis, one can be relatively confident that the intervention effect is not 

overestimated due to random error.   
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Our study comes with several strengths and limitations. Our simulations covered a wide 

spectrum of meta-analysis scenarios which we believe occur frequently in the systematic review 

literature. Our simulation results therefore have good generalizability to meta-analysis in 

practice. While the spectrum of scenarios covered in our simulations is not as extensive as seen 

in some previous meta-analysis simulation studies, adding additional scenarios to the current 

study would likely increase the complexity and hamper the interpretability of our findings. We 

believe the chosen spectrum of our simulations constitute a close to optimal balance between 

interpretability and generalizability. 

 

Our simulation study is the first of its kind to contrast the risk of overestimation of intervention 

effects due to random errors with information size requirements. The statistical purpose of 

calculating the OIS is to gain control over the risk of obtaining a false positive finding (type I 

error) and a false negative finding (type II error). Extending this purpose, authors have 

previously considered information size requirements as a means of gaining control over the risk 

of overestimation.
2,20

 Our simulation study is the first to explore the validity of this theoretical 

claim. However, we only investigated the extent to which information size requirements protect 

against overestimation when the underlying assumptions (e.g., a priori assumed RRR and control 

group risk) matched the parameter settings in a given simulation scenario (e.g., the assumed 

control group risk for the optimal information size was set to 10% when the control group risk in 

the simulation was sampled from a uniform distribution between 5% and 15%). That is, our 

findings hold for information sizes that have been calculated using the appropriate assumptions 

for a given scenario. In reality, it can be difficult to know which assumptions are most 

appropriate when doing information size calculations for a meta-analysis. The implications of 
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employing overly lenient or conservative a priori assumptions for the OIS are, theoretically, 

relatively straightforward. Lenient assumptions (e.g., β = 20% and RRR = 0.35) will result in 

relatively small information size requirements, and thus, an inappropriately high degree of 

confidence that the estimated intervention effect can be trusted (i.e., is not an overestimate). 

Conversely, conservative assumptions (e.g., α = 0.1% and RRR = 0.10) have the potential to 

remove confidence about an intervention effect estimate, even if the intervention effect estimate 

is in fact reliable. 

 

We mentioned in the introduction that various types of bias (e.g., methodological bias or 

publication bias) may also be important causes of overestimation of intervention effects.
3,13

 We 

did not attempt to include any biases in our simulations. It is likely that when bias is present in a 

meta-analysis, a larger number of patients and events will be required to limit the risk of 

overestimation. In some cases, bias may limit the reliability of the size of the intervention 

estimate independent of how large the meta-analysis is. 

 

Another limitation of our simulations is that the underlying true trial effects were sampled as 

random effects. This approach does not consider the possibility that the magnitude of trial effects 

to some extent may depend on time. For example, the first series of trials in a meta-analysis 

compared to the later trials may generally recruit a broader or narrower population, use shorter or 

longer follow-up, or administer higher or lower doses of a drug. Depending on the effect such 

time dependencies have on the evolution of the meta-analyzed intervention effect, the number of 

patients and events required to limit overestimation may be either larger or smaller than our 

results indicate. 
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Our simulation results are consistent with the results of previous empirical studies. More 

specifically, the pooled intervention effect estimates tend to fluctuate considerably when the 

number of patients and events are sparse, thus creating a high risk of overestimation.
4–6,12

 

Ioannidis and Lau previously investigated convergence of intervention effects in two fields, 

interventions in pregnancy and perinatal medicine and management of myocardial infarction. 

They found that more than 10,000 patients were generally required to relieve uncertainty about 

subsequent changes in meta-analyzed intervention effects.
4
 Trikalinos et al.  performed a similar 

study on interventions within the field of mental health and found that only 2000 patients were 

required to relieve uncertainty about subsequent changes in meta-analyzed intervention effects.
5
 

The meta-analyses considered by Ioannidis and Lau were similar to many of our simulated 

scenarios where the control group risk was ‘low’ and ‘moderately low’. The meta-analyses 

considered by Trikalinos et al. were similar to many of our simulated scenarios where the control 

group risk was ‘moderate’ or ‘high’.  

 

The results of our simulation study have several implications. First, they underscore the need for 

information size requirements in all meta-analyses. Second, they illustrate the dangers of relying 

on intervention effect estimates before the OIS is reached (or is close to being reached), even 

when the presence of bias is unlikely. The figures in the supporting information provide meta-

analysts with an opportunity to check the approximate risk of overestimation due to random error 

in their meta-analyses.  
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Two key inferential measures in a meta-analysis are the p-value and the 95% confidence interval 

associated with the estimated intervention effect. We wish to offer additional caution in 

interpreting meta-analyzed intervention effect estimates in the face of limited evidence. Large 

effect estimates (true or false) do not require high precision to reach conventional statistical 

significance (i.e., p ≤ 0.05). As demonstrated in empirical studies, early large intervention effects 

are likely to dissipate and early statistically significant meta-analyses are likely to be false 

positives.
4–6,12,21

  Therefore, when observing a large statistically significant intervention effect 

estimate (e.g., RRR > 30%) in a meta-analysis including a limited number of patients and events, 

one should always consider whether the meta-analysis, with the same precision, would have been 

statistically significant had the observed intervention effect been moderate or small. Chances are 

it would not. By the same token, one should always consider what values the confidence interval 

would have included had the effect estimate been moderate or small.  

 

Even if an ‘early’ large intervention effect estimate is not supported by formal statistical 

significance, the situation may still be problematic. Large intervention effects will encourage 

clinical trial investigators to conduct further trials, and systematic review authors to perform 

regular updates of the meta-analysis until it either reaches statistical significance or the early 

trend has been definitively refuted. Updates of meta-analysis cause multiplicity due to repeated 

significance testing – a conduct which has been documented as highly problematic.
6,10,22–24

 In 

particular, multiple testing increases the risk of observing a falsely significant result before the 

optimal information size has been surpassed. This may very well happen at a point where the risk 

of overestimation is still substantial. Moreover, in the face of repeated significance testing, 

confidence intervals suffer from reduced coverage, and thus an increased risk of precluding the 
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‘true’ intervention effect. Multiplicity due to repeated significance testing in meta-analysis can 

be accounted for by employing sequential testing procedure like the O’Brien-Fleming group 

sequential boundaries (i.e., adjusted thresholds for statistical significance) and adjusted 

confidence intervals can be constructed accordingly. Evidence suggests that these techniques 

provide adequate protection against false positives.
6,8,14,22

 Given that such adjusted significance 

thresholds and the corresponding adjusted confidence intervals are tied to the calculated 

information size requirement, and given that information size criteria seem to provide adequate 

protection against ‘early’ overestimation, it seems reasonable to believe that adjusted 

significance thresholds and confidence intervals are appropriate inferential measures for 

interpreting early intervention effect estimates in meta-analysis. 

 

In conclusion, the risk of overestimated intervention effects in meta-analysis due to random error 

is often substantial in the face of a limited number of patients and events. Insisting that a meta-

analysis meets a reasonable OIS will ensure an acceptably low risk of observing an 

overestimated intervention effect due to random errors. 

 

 

 

 

 

 

 

[25–30]
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Supporting information 1 (Appendix S1) 

Random-effects model meta-analysis 

In the meta-analytic framework, the random-effects model is defined as follows.
3,18,19

 Assume 

we have k independent trials. Let Yi be the estimate of the effect from the individual trials. Let µi 

be the true intervention effect of the ith trial, and let σi
2
 denote the variance of µi. The trial 

specific intervention effects are assumed to vary across trials, with an underlying true effect, µ, 

and a between-trial variance τ2
. The random-effects model is defined hierarchically by 

 

Yi = µi + εi,   εi ~ N(0, σi
2
) 

    

µi = µ + Ei,   Ei ~ N(0, τ2
) 

 

Collapsing the hierarchy, the observed effect measure, Yi, is then assumed to satisfy the 

distributional relationship Yi ~ N(µ, σi
2
 + τ2

), and the trial weights, wi
*
, are set as the inverse of 

the individual trial variances, wi
*
 = (σi

2
 + τ2

)
-1

. Here we use the asterix to indicate that the 

weights come from the random-effects model (as opposed to the weights coming from a fixed-

effect model wi = σi
-2

). In practice, neither σ1
2
, …, σk

2
, nor τ2

 are known. The within-trial 

variances are typically often estimated using the sampling variances and the between-trial 

variance τ2
 is typically obtained using some estimator (see below). 

 

In the random-effects model meta-analysis the overall intervention effect is obtained as a 

weighted average of the observed intervention effects in the included trials 
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µw = (Σi wi
* ⋅ Yi )/(Σi wi

*
) 

and the variance is estimated as 

Var(µw) = 1/(Σi wi
*
) 

 

DerSimonian-Laird random-effects meta-analysis 

In the conventional random-effects model approach proposed by DerSimonian and Laird (DL), 

the between-trial variance is estimated using a method of moments based estimator.
18

 Cochran’s 

homogeneity test statistic, Q = Σ wi (Yi - µw)
2
, is used as the basis of the DL estimator, as its 1

st
 

moment takes the form E(Q) = (k-1) + τ2
 (S1 – (S2 / S1)), where Sr =Σ wi

r
, for r = 1,2. Isolating 

for τ2
 then yields the expression for the method of moments estimator of the between-trial 

variance 

 

τDL
2
 = max(0, (Q - k + 1) / (S1 – (S2 / S1))) 
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Supporting information S2 (Appendix S2) 

Simulation 

We aimed to create ‘realistic’ meta-analysis data sets. We first did so by confining our attention 

to one area of medicine, cardiology, and surveyed all meta-analyses on mortality from the 

Cochrane Heart Group (Issue 4, 2009) to inform ‘realistic’ simulation parameter settings. 

However, subsequently realizing an important lack of generalizability from this approach (as a 

peer reviewer kindly pointed out), we added a number of simulation parameter values and 

settings to allow for inferences that apply to a greater spectrum of meta-analysis scenarios.   

 

When surveying the meta-analyses from the Cochrane Heart Group, we selected reviews that 

meta-analyzed results on mortality, including at least 3 trials and 100 events. We separately 

surveyed meta-analyses in which the median follow-up across trials was between 1 month and 1 

year, and between 1 year and 5 years. We did not include meta-analyses including cluster 

randomized trials in our survey. For each eligible meta-analysis, we recorded the trial sample 

sizes, the trial control group risk, the pooled relative risks, the associated 95% confidence 

intervals, and the estimated DerSimonian-Laird between-trial variance (on a log relative risk 

scale, see Appendix S1 in supporting information). For each eligible meta-analysis, we also 

recorded the median, minimum, maximum, and the quartiles for the trial sample sizes and 

control group risks, and summarized these statistics in a table. With the surveyed information, 

we plotted all trial sample sizes as a histogram. 
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Tables S1 and S2 and Figure S13 in the supporting information present the data summaries 

produced from the survey of the Cochrane Heart Group meta-analyses that were used to inform 

the settings of our simulations. 

 

Determining simulation parameters 

We simulated binary data meta-analysis scenarios based on distributional assumptions for the 

trial specific variables: the underlying true intervention effect, µ, the distribution of trial sample 

sizes, ni, the observed control group risks, PCi, and the level of heterogeneity (between-trial 

variance), τ
2
.  The results from the survey of the Cochrane Heart Group meta-analyses and our 

subsequent considerations informed the values and distributions of each of the above simulation 

components. 

 

Distribution of trial sizes 

Figure S13 and the ‘trial sample size’ columns in Table S1 in the supporting information provide 

an overview of the distribution of trial sample sizes among the surveyed Cochrane Heart Group 

mortality meta-analyses. After post hoc inspection of Figure S6 we calculated the proportion of 

trial sizes between 20, 200, 500, 1000, 2000, 5000, 10,000, and 50,000 participants. The 

estimated proportions are shown in table S2 in the supporting information. For our simulations, 

we decided only to simulate trials smaller than 5000 patients. We did this because intervention 

effects from large trials are assumed to come close to the overall average effect, whereas larger 

variations between intervention effects are typically observed across smaller trials.
25,26

 Thus, the 

random-effects distributional assumptions, such as large between-trial variance, that allow for 
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very large trials to yield vastly different intervention effect estimates do not seem to be 

representative of meta-analyses in general. 

 

Because larger trials are still rare in many medical areas, we decided to add a distribution of trial 

sizes to our simulations that more adequately reflected the spectrum and distribution of trial 

sample sizes that have been reported in the literature and seemed consistent with our own 

experience with meta-analysis in systematic reviews.
27,28

 We decided on a second trial sample 

size distribution under which there is an 80% chance that a trial will have a sample size between 

20 and 200 patients and a 20% chance that a trial will have a sample size between 200 and 500 

patients. We have referred to this as a ‘common’ distribution of trial sample sizes in our paper. 

 

Distribution of control group risks 

In the survey of the Cochrane Heart Group meta-analyses, the median control group risks were 

generally lower than 10%. Based on table S1 in the supporting information, we assumed two 

distributions for the ‘true’ trial control group risk: ‘low’ and ‘moderately low’. For low risks we 

assumed that the underlying trial control group risk would follow a uniform distribution between 

1% and 5% (average of 3%). For moderately low risks, we assumed the underlying trial control 

group risk would follow a uniform distribution between 5% and 15% (average of 10%).  

 

Subsequent considerations led us to additionally consider higher control group risks to increase 

generalizability of our results. In particular, we assumed that a ‘moderate’ control group risk 

could be represented by a uniform distribution between 15% and 40% (average of 27.5%), and 
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that a ‘high’ control group risk could be represented by a uniform distribution between 40% and 

80% (average of 60%). 

 

Between-trial variance 

In the Cochrane Heart Group survey, the between-trial variance (heterogeneity) estimates 

spanned from 0.00 to 0.16, with the most common values being either truncated at 0.00 or in the 

interval of 0.03 to 0.07. The DerSimonian-Laird estimator is, however, known to underestimate 

the between-trial variance.
29,30

 For this reason, we picked the three between-trial variance values 

0.05, 0.15, and 0.25, which were moderately larger than the DerSimonian-Laird estimates 

observed in the Cochrane Heart Group meta-analysis sample. We believe that these values cover 

the spectrum in which most between-trial variance estimates fall, and thus, we did not add 

additional simulation values to those inferred from the survey. 

 

Underlying true intervention effect 

We considered two hypothetical situations: one where no underlying intervention effect exists 

(RRR = 0%), and one where a small but possibly unimportant intervention effect exists (RRR = 

10%). Of note, the selected underlying true intervention effects were chosen to fit the objectives 

of this study, but not the results of the Cochrane Heart Group survey. 

 

The simulation setup 

First, we drew, with probabilities, the interval from which the trial sample size was to be 

sampled (Table S2 for the Cochrane Heart Group based trial sample sizes, or as given above for 

`common` trial sample sizes). We then drew the trial sample size, n, from a uniform distribution 
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on the interval that corresponded to the trial size category. The number of patients recruited to 

each intervention arm was set equal to n/2 (rounded up if n was an odd number).  

 

We drew the trial specific control group risk, PCi, from a uniform distribution on one of the 

intervals given above (corresponding to the given scenario), and subsequently drew the number 

of observed events in the control group from a binomial distribution eiC ~ bin(ni, PCi).  

We drew the underlying true trial intervention effects as log relative risks from a normal 

distribution, ln(RRi) ~ N(µ, τ2
), where µ is the natural logarithm of the underlying ‘true’ relative 

risk. Lastly, we drew the observed number of events in the intervention group from a binomial 

distribution eiE ~ bin(ni, PEi ), where PEi  = PCi ⋅ RRi. For each scenario, we simulated 20,000 

meta-analysis data sets, each including 100 trials. 
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Tables and Figures 

 

Scenario parameters 

 
Number of patients required for the 

probability of overestimation to drop below  

Number of events required for the 

probability of overestimation to drop below 

True effect Overestimation PC τ
2
  10% 5% 1%  10% 5% 1% 

RRR = 0% RRR > 30% 1%-5% 0.05  2000 3500 8000  100 150 300 

   0.15  2500 4500 10500  100 150 350 

   0.25  3000 5500 11500  150 200 350 

  5%-15% 0.05  1000 1500 3500  100 150 350 

   0.15  1500 2500 6500  150 250 600 

   0.25  1500 3500 8000  200 350 750 

 RRR > 20% 1%-5% 0.05  5500 9000 19500  200 300 600 

   0.15  6500 10500 21500  250 350 650 

   0.25  6500 11500 23000  250 350 700 

  5%-15% 0.05  2500 4000 9000  200 400 850 

   0.15  3000 6500 13000  350 600 1250 

   0.25  4500 8000 16500  450 750 1650 

            

RRR = 10% RRR > 30% 1%-5% 0.05  4000 7000 14500  150 250 450 

   0.15  5500 9000 18000  200 300 550 

   0.25  5500 9000 18500  200 300 550 

  5%-15% 0.05  2000 3000 7500  200 300 700 

   0.15  2500 5500 11000  250 450 1000 

   0.25  3500 7000 14000  350 600 1250 

 RRR > 20% 1%-5% 0.05  16500 26500 >50000  500 800 1650 

   0.15  15000 25000 >50000  500 800 1500 

   0.25  14500 24000  >50000  450 750 1450 

  5%-15% 0.05  7500 13500 26500  700 1250 2500 

   0.15  10000 17000 37000  950 1600 3400 

   0.25  12000 19500 40000  1150 1850 3750 

Table 1 Presents the required number of patients and events for the probability of overestimation to drop below 10%, 5% and 1%, in scenarios where 

the control group risk is ‘low’ or ‘moderately low’ and where the distribution of trial sample sizes is based on a survey of 23 Cochrane Heart Group 

meta-analyses on mortality. 
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Scenario parameters 
 

OIS (required number of patients)  OIS (required number of events) 

Assumed effect PC I
2
  ββββ=20% ββββ=10% ββββ=5%  ββββ=20% ββββ=10% ββββ=5% 

RRR = 30% 3% 0%  9600 13000 16000  250 350 400 

  25%  13000 17000 21500  350 450 550 

  50%  19500 26000 32000  500 650 800 

RRR = 20%  0%  23000 30500 38000  600 850 1000 

  25%  30500 41000 51000  850 1100 1350 

  50%  46000 61000 76000  1250 1650 2050 

RRR = 30% 10% 0%  2700 3600 4500  250 300 400 

  25%  3500 5000 6000  300 400 500 

  50%  5500 7500 9000  450 600 750 

RRR = 20%  0%  6500 8500 10500  600 800 1000 

  25%  8500 11500 14000  750 1000 1300 

  50%  13000 17000 21500  1150 1550 1900 

RRR = 30% 27.5% 0%  900 1100 1400  200 300 350 

  25%  1100 1500 1800  250 350 450 

  50%  1700 2200 2700  400 550 650 

RRR = 20%  0%  1900 2600 3200  500 650 800 

  25%  2600 3500 4300  650 850 1050 

  50%  3900 5200 6400  950 1300 1600 

RRR = 30% 60% 0%  200 300 400  150 200 200 

  25%  300 400 500  200 250 300 

  50%  500 600 800  250 350 400 

RRR = 20%  0%  500 700 900  300 400 500 

  25%  700 1000 1200  400 550 650 

  50%  1100 1500 1800  600 800 950 

Table 2 Presents the calculated optimal information size (OIS) to detect RRR = 30% and RRR = 20% respectively depending on the underlying  

assumed control group risk (PC), a desired type I error of 5%, variations of the desired type II error (β = 20%, 10%, or 5%) and the anticipated  

degree of heterogeneity. The re required number of events have been rounded up to the nearest number divisible by 50. The required number of  

patients have been rounded up to the nearest number divisible by 1000 when PC = 3% and PC = 10% and to the nearest number divisible by 100  

when PC = 27.5% and PC = 60%. 



44 

 

 

 

 

Table 3 Presents the comparison of the optimal information size to demonstrate a relevant intervention effect with the required number of patients and  

events to limit the risk of overestimation in simulation scenarios where the distribution of trial sample sizes was based on survey of Cochrane Heart Group  

meta-analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation   Optimal Information Size (OIS) 

PC Overestimation Acceptability Patients Events  PC RRR Power Patients Events 

1%-5% RRR > 30% Good 3500-5500 150-200  3% 30% 80% 10000-20000 250-500 

  Very Good 7000-11500 250-350    90% 13000-26000 350-650 

  Excellent 14500-18500 450-550    95% 16000-32000 400-800 

 RRR > 20% Good 10000-15000 400-500   20% 80% 23000-46000 600-1250 

  Very Good 20000-25000 600-800    90% 30000-61000 850-1650 

  Excellent >50000 1400-1600    95% 38000-76000 1000-2050 

5%-15% RRR > 30% Good 2000-4000 200-300  3% 30% 80% 3000-5500 250-450 

  Very Good 3000-8000 300-700    90% 3500-7500 300-600 

  Excellent 7000-14000 700-1200    95% 4500-9000 400-750 

 RRR > 20% Good 7000-12000 600-1200   20% 80% 6500-13000 600-1150 

  Very Good 9000-19000 1250-1850    90% 8500-17000 800-1600 

  Excellent 26000-40000 2500-2800    95% 10500-21000 1000-1900 
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Table 4 Presents the comparison of the optimal information size (OIS) to demonstrate a relevant intervention effect with the required number of patients and  

events to limit the risk of overestimation in simulation scenarios where the distribution of trial sample sizes was based on survey of Cochrane Heart Group  

meta-analyses. 

Simulation   Optimal information size 

PC Overestimation Acceptability Patients Events  PC RRR Power Patients Events 

1%-5% RRR > 30% Good 2500 100  3% 30% 80% 10-20000 250-500 

  Very Good 3500-4500 150-200    90% 13-26000 350-650 

  Excellent 6000-7500 200-250    95% 16-32000 400-800 

 RRR > 20% Good 4000-7500 150-250   20% 80% 23-46000 600-1250 

  Very Good 7000-11000 250-400    90% 30-61000 850-1650 

  Excellent 14000-19000 350-600    95% 38-76000 1000-2050 

5%-15% RRR > 30% Good 1500 100-150  10% 30% 80% 3000-5500 250-450 

  Very Good 2000-3000 200-250    90% 3500-7500 300-600 

  Excellent 3500-4500 350-450    95% 4500-9000 400-750 

 RRR > 20% Good 2500-3500 250-350   20% 80% 6500-13000 600-1150 

  Very Good 4500-5500 450-600    90% 8500-17000 800-1600 

  Excellent 11000-12000 900-1150    95% 10500-21000 1000-1900 

           

15%-40% RRR > 30% Good 500-2500 150-700  27.5% 30% 80% 800-1700 200-400 

  Very Good 1400-6200 400-1700    90% 1100-2200 300-550 

  Excellent 4000-12000 1000-3000    95% 1400-2700 350-650 

 RRR > 20% Good 1000-3000 300-850   20% 80% 1900-3600 500-950 

  Very Good 2100-5400 550-1350    90% 2600-5200 650-1300 

  Excellent 6200-11400 1500-2300    95% 3200-6400 800-1600 

40%-80% RRR > 30% Good 200-1000 150-500  60% 30% 80% 200-500 150-250 

  Very Good 600-1800 300-1000    90% 300-600 200-350 

  Excellent 1100-3200 600-1600    95% 400-800 200-400 

 RRR > 20% Good 700-3400 350-1950   20% 80% 500-1100 300-600 

  Very Good 1400-5800 750-3500    90% 700-1500 400-800 

  Excellent 4000-11000 2000-5000    95% 900-1800 500-950 
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Figure 1 Flowchart of simulations and analyses. Simulation scenarios that included combinations of Cochrane Heart Group survey based trial sample 

size distribution and either ‘moderate’ or ‘high’ control group risks were not performed. 
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Figure 2 Presents the proportions of pooled intervention effects overestimating the relative risk reduction 

with 30% (          ) and 20% (            ) in the scenario with no underlying intervention effect (i.e., RRR = 0%), 

the trial sample size distribution is based on the Cochrane Heart Group survey, the control group risk is 

moderate (i.e., drawn from a uniform distribution between 5% and 15%) and the heterogeneity is moderate 

(i.e., τ2 
= 0.15). The proportion of pooled intervention effect estimates (the risk of overestimation) are plotted 

in relation to the cumulative number of patients (upper plot) and events (lower plot). 
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MA 

 

Term 

MA sample size Trial Sample Size (#patients) Trial control group event rate Pooled RR 

(95%CI) 

 

ττττ2 #patients #trials Median Quartile Spectrum Median Quartiles MinMax 

1 Short 2799 13 154 101-199 47-742 0.09 0.07-0.12 0.02-0.16 0.85(0.67-1.07) 0.00 

2 Short 7759 8 145 103-201 63-6800 0.05 0.04-0.06 0.01-0.35 0.99(0.93-1.06) 0.00 

3 Short 4832 15 238 163-337 85-1058 0.02 0.01-0.04 0.005-0.09 1.04(0.71-1.53) 0.00 

4 Short 3745 6 525 252-1022 62-1285 0.02 0.01-0.03 0.01-0.09 0.90(0.64-1.28) 0.00 

5 Short 2312 8 277 215-306 88-651 0.09 0.06-0.11 0.01-0.21 0.72(0.55-0.95) 0.00 

6 Short 2588 12 201 80-299 52-651 0.07 0.04-0.10 0.01-0.22 0.76(0.59-0.99) 0.00 

7 Short 2658 4 139 87-716 50-2330 0.40 0.35-0.43 0.17-0.48 0.84(0.64-1.09) 0.03 

9 Short 8412 21 164 102-311 26-3833 0.06 0.05-0.11 0.01-0.24 1.17(0.96-1.43) 0.04 

10 Short 6780 9 298 198-477 102-3833 0.09 0.06-0.18 0.01-0.22 1.18(0.90-1.55) 0.07 

11 Short 7473 14 187 150-329 26-3833 0.03 0.01-0.07 0.01-0.11 1.30(0.95-1.79) 0.07 

 

12 Long 2428 11 165 135-275 78-503 0.09 0.06-0.13 0.02-0.18 0.60(0.40-0.91) 0.16 

13 Long 1799 10 185 115-200 34-358 0.20 0.13-0.28 0.06-0.31 0.90(0.74-1.10) 0.00 

14 Long 5183 4 1209 355-2150 198-2268 0.11 0.06-0.18 0.06-0.20 0.98(0.85-1.13) 0.00 

15 Long 18679 6 3420 1217-5018 283-5522 0.07 0.05-0.09 0.04-0.17 1.00(0.92-1.09) 0.00 

17 Long 33201 15 360 211-1322 82-13406 0.04 0.02-0.11 0.01-0.22 0.87(0.73-1.03) 0.03 

18 Long 3604 6 219 156-728 88-2082 0.04 0.03-0.08 0.02-0.18 1.04(0.7-1.52) 0.04 

19 Long 10379 22 167 100-426 32-2481 0.07 0.04-0.14 0.01-0.34 0.77(0.61-0.99) 0.12 

20 Long 7546 11 441 209-816 98-2481 0.09 0.05-0.10 0.01-0.13 0.88(0.74-1-04) 0.00 

21 Long 12603 20 342 154-663 77-4165 0.34 0.22-0-45 0.08-0.82 0.64(0.58-0.71) 0.02 

22 Long 969 6 185 120-191 32-275 0.09 0.05-0.11 0.03-0.22 1.13(0.70-1.84) 0.12 

Table S1 Presents the recorded meta-analysis and trial characteristics from the survey of Cochrane Heart Group mortality meta-analyses. The 

column labeled ‘Quartile’ contains the 25
th
 to 75

th
 percentile interval. The columns labeled ‘Spectrum’ contains the minimum and maximum value 

observed. The last column contains the DerSimonian-Laird estimate of the between-trial variance (on the log relative risk scale). 
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Trial sample size 

interval 

Estimated  

proportion 

for all trials 

Estimated proportions 

excluding trials larger 

than 5000 patients 

 

Proportions used for 

simulations 

20 to 200 50.8% 52.3% 50.0% 

201 to 500 26.6% 27.4% 27.5% 

501 to 1000 8.2% 8.4% 10.0% 

1001 to 2000 5.1% 5.1% 7.5% 

2001 to 5000 6.6% 6.8% 5.0% 

5000 to 10000 1.6% - - 

10000 to 50000 1.1% - - 

Table S2 Estimated proportions of trial sample sizes based on the survey of Cochrane Heart Group  

meta-analysis as well as proportions used in our simulations. 
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Scenario parameters 

 
Number of patients required for the 

probability of overestimation to drop below  

Number of events required for the 

probability of overestimation to drop below 

True effect Overestimation PC τ
2
  10% 5% 1%  10% 5% 1% 

RRR=0% RRR>30% 15%-40% 0.05  300 500 1000  100 150 250 

   0.15  400 800 1500  150 250 400 

   0.25  600 1000 2100  200 300 550 

  40%-80% 0.05  <100 200 600  100 150 350 

   0.15  100 600 1200  200 350 650 

   0.25  500 900 1800  300 450 1000 

 RRR>20% 15%-40% 0.05  700 1000 2100  200 300 550 

   0.15  1000 1600 3300  300 450 900 

   0.25  1300 2100 4200  400 600 1100 

  40%-80% 0.05  400 700 1400  200 350 750 

   0.15  800 1300 2600  450 700 1450 

   0.25  1200 2100 4300  700 1100 2400 

            

RRR=10% RRR>30% 15%-40% 0.05  500 900 1700  150 250 450 

   0.15  800 1400 2600  250 350 650 

   0.25  1100 1800 3400  300 450 900 

  40%-80% 0.05  300 500 1100  200 300 600 

   0.15  700 1100 2200  350 600 1200 

   0.25  1000 1500 3200  500 800 1600 

 RRR>20% 15%-40% 0.05  1900 3100 6200  500 800 1500 

   0.15  2500 4100 9800  700 1100 2150 

   0.25  3500 5400 11500  850 1350 2300 

  40%-80% 0.05  1100 1900 3900  650 1050 2000 

   0.15  2300 4000 9700  1300 2200 4300 

   0.25  3400 5800 11000  1950 3500 >5000 

Table S3 Presents the required number of patients and events for the probability of overestimation to drop below 10%, 5% and 1%, in the 

simulation based on the sensitivity trial size distribution. 
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Scenario parameters 

 
Number of patients required for the 

probability of overestimation to drop below  

Number of events required for the 

probability of overestimation to drop below 

True effect Overestimation PC τ
2
  10% 5% 1%  10% 5% 1% 

RRR=0% RRR>30% 1%-5% 0.05  1500 2500 4500  100 100 200 

   0.15  1500 2500 4500  100 100 200 

   0.25  1500 2500 4500  100 100 200 

  5%-15% 0.05  1000 1500 2500  100 150 200 

   0.15  1000 1500 2500  100 150 250 

   0.25  1000 1500 3000  100 150 300 

 RRR>20% 1%-5% 0.05  3500 5000 10500  150 200 300 

   0.15  3000 4500 9000  150 200 300 

   0.25  2500 4000 7500  100 150 300 

  5%-15% 0.05  1500 2500 4500  150 250 450 

   0.15  2000 2500 5000  200 250 500 

   0.25  2000 3000 5500  200 300 550  

            

RRR=10% RRR>30% 1%-5% 0.05  2500 4000 7500  100 150 250 

   0.15  2500 3500 6500  100 150 250 

   0.25  2500 3500 6000  100 150 200 

  5%-15% 0.05  1500 2000 3500  150 200 350 

   0.15  1500 2500 4000  150 200 400 

   0.25  1500 2500 4500  150 250 450 

 RRR>20% 1%-5% 0.05  7500 11500 19000  250 400 650 

   0.15  5000 8500 17000  200 300 450 

   0.25  4500 7000 14000  200 250 350 

  5%-15% 0.05  3500 5500 11500  350 600 1150 

   0.15  3500 5500 12000  350 550 900 

   0.25  3500 5000 11000  350 550 900 

Table S4 Presents the required number of patients and events for the probability of overestimation to drop below 10%, 5% and 1%, in the 

simulation based on the sensitivity trial size distribution. 
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Figure S1 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (          ) and 20% (           ) when there 

is no underlying intervention effect (i.e., RRR = 0%), and where the distribution trial sample sizes are based on the survey of 23 Cochrane Heart 

Group meta-analyses. The proportions are plotted in relation to the cumulative number of patients. The upper three plots present the results from 

the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 1% and 5% (‘low’ 

risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform distribution between 5% and 

15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), the middle two results from 

scenarios with moderate heterogeneity(τ2
 = 0.15),  and the two right plots results from scenarios with substantial heterogeneity (τ2

 = 0.25). 
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Figure S2 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (          ) when there 

is no underlying intervention effect (i.e., RRR=0%), and where the distribution trial sample sizes are based on the survey of 23 Cochrane Heart 

Group meta-analyses. The proportions are plotted in relation to the cumulative number of events. The upper three plots present the results from the 

simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 1% and 5% (‘low’ risk), 

and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform distribution between 5% and 15% 

(‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), the middle two results from 

scenarios with moderate heterogeneity(τ2
 = 0.15), and the two right plots results from scenarios with substantial heterogeneity (τ2

 = 0.25). 
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Figure S3 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (           ) when 

there is a small but potentially important intervention effect (i.e., RRR = 10%), and where the distribution trial sample sizes are based on the 

survey of 23 Cochrane Heart Group meta-analyses. The proportions are plotted in relation to the cumulative number of patients. The upper three 

plots present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution 

between 1% and 5% (‘low’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform 

distribution between 5% and 15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), 

the middle two results from scenarios with moderate heterogeneity (τ2
 = 0.15), and the two right plots results from scenarios with substantial 

heterogeneity (τ2
 = 0.25). 
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Figure S4 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (            ) and 20% (           ) when 

there is small but potentially important intervention effect (i.e., RRR = 10%), and where the distribution trial sample sizes are based on the survey 

of 23 Cochrane Heart Group meta-analyses. The proportions are plotted in relation to the cumulative number of events. The upper three plots 

present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 

1% and 5% (‘low’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform 

distribution between 5% and 15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), 

the middle two results from scenarios with moderate heterogeneity (τ2
 = 0.15),  and the two right plots results from scenarios with substantial 

heterogeneity (τ2
 = 0.25). 
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Figure S5 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (           ) when 

there is no underlying intervention effect (i.e., RRR = 0%), and where the distribution trial sample sizes are our assessment of what constitutes 

‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of patients. The upper three plots 

present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 

1% and 5% (‘low’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform 

distribution between 5% and 15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), 

the middle two results from scenarios with moderate heterogeneity (τ2
 = 0.15),  and the two right plots results from scenarios with substantial 

heterogeneity (τ2
 = 0.25). 
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Figure S6 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (            ) and 20% (           ) when 

there is no underlying intervention effect (i.e., RRR = 0%), and where the distribution trial sample sizes are our assessment of what constitutes 

‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of events. The upper three plots 

present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 

1% and 5% (‘low’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform 

distribution between 5% and 15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), 

the middle two results from scenarios with moderate heterogeneity(τ2
 = 0.15),  and the two right plots results from scenarios with substantial 

heterogeneity (τ2
 = 0.25).
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Figure S7 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (          ) when there 

is small but potentially important intervention effect (i.e., RRR = 10%), and where the distribution trial sample sizes are our assessment of what 

constitutes ‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of patients. The upper 

three plots present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform 

distribution between 1% and 5% (‘low’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from 

a uniform distribution between 5% and 15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 

= 0.05), the middle two results from scenarios with moderate heterogeneity (τ2
 = 0.15),  and the two right plots results from scenarios with 

substantial heterogeneity (τ2
 = 0.25). 
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Figure S8 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (          ) when there 

is small but potentially important intervention effect (i.e., RRR = 10%), and where the distribution trial sample sizes are our assessment of what 

constitutes ‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of events. The upper 

three plots present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform 

distribution between 1% and 5% (‘low’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from 

a uniform distribution between 5% and 15% (‘moderately low’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 

= 0.05), the middle two results from scenarios with moderate heterogeneity (τ2
 = 0.15),  and the two right plots results from scenarios with 

substantial heterogeneity (τ2
 = 0.25). 
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Figure S9 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (          ) when there 

is no underlying intervention effect (i.e., RRR = 0%), and where the distribution trial sample sizes are our assessment of what constitutes 

‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of patients. The upper three plots 

present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 

15% and 40% (‘moderate’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform 

distribution between 40% and 80% (‘high’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), the middle 

two results from scenarios with moderate heterogeneity (τ2
 = 0.15), and the two right plots results from scenarios with substantial heterogeneity (τ2

 

= 0.25).
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Figure S10 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (            ) and 20% (           ) when 

there is no underlying intervention effect (i.e., RRR = 0%), and where the distribution trial sample sizes are our assessment of what constitutes 

‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of events. The upper three plots 

present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform distribution between 

15% and 40% (‘moderate’ risk), and the lower three plots present the results from the simulated scenarios where they are drawn from a uniform 

distribution between 40% and 80% (‘high’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity (τ2
 = 0.05), the middle 

two results from scenarios with moderate heterogeneity (τ2
 = 0.15), and the two right plots results from scenarios with substantial heterogeneity (τ2

 

= 0.25). 
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Figure S11 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (            ) and 20% (           ) when 

there is small but potentially important intervention effect (i.e., RRR = 10%), and where the distribution trial sample sizes are our assessment of 

what constitutes ‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of patients. The 

upper three plots present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform 

distribution between 15% and 40% (‘moderate’ risk), and the lower three plots present the results from the simulated scenarios where they are 

drawn from a uniform distribution between 40% and 80% (‘high’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity 
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(τ2
 = 0.05), the middle two results from scenarios with moderate heterogeneity (τ2

 = 0.15), and the two right plots results from scenarios with 

substantial heterogeneity (τ2
 = 0.25). 

 
Figure S12 Presents the proportions of pooled intervention effects exceeding a relative risk reduction of 30% (           ) and 20% (          ) when 

there is small but potentially important intervention effect (i.e., RRR = 10%), and where the distribution trial sample sizes are our assessment of 

what constitutes ‘common’ meta-analysis trial size distributions. The proportions are plotted in relation to the cumulative number of events. The 

upper three plots present the results from the simulated scenarios where the underlying ‘true’ trial control group risks are drawn from a uniform 

distribution between 15% and 40% (‘moderate’ risk), and the lower three plots present the results from the simulated scenarios where they are 

drawn from a uniform distribution between 40% and 80% (‘high’ risk). The two left plots present results from scenarios with ‘mild’ heterogeneity 

(τ2
 = 0.05), the middle two results from scenarios with moderate heterogeneity (τ2

 = 0.15), and the two right plots results from scenarios with 

substantial heterogeneity (τ2
 = 0.25). 
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Figure S13 Histogram of trial sample sizes in the surveyed Cochrane heart group meta-analyses 
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Abstract 

Background: Assessment of heterogeneity is essential in systematic reviews and meta-analyses 

of clinical trials. The most commonly used heterogeneity measure, I
2
, provides an estimate of the 

proportion of variability in a meta-analysis that is explained by differences between the included 

trials rather than by sampling error. Recent studies have raised concerns about the reliability of I
2
 

estimates, due to their dependence on the precision of included trials and time-dependent biases. 

Authors have also advocated use of 95% confidence intervals (CIs) to express the uncertainty 

associated with I
2
 estimates. However, no previous studies have explored how many trials and 

events are required to ensure stable and reliable I
2
 estimates, or how 95% CIs perform as 

evidence accumulates. 

Methods and Findings: To assess the stability and reliability of I
2
 estimates and their 95% CIs, 

in relation to the cumulative number of trials and events in meta-analysis, we looked at 16 large 

Cochrane meta-analyses - each including a sufficient number of trials and events to reliably 

estimate I
2
 - and monitored the I

2
 estimates and their 95% CIs for each year of publication. In 10 

of the 16 meta-analyses, the I
2
 estimates fluctuated more than 40% over time. The median 

number of events and trials required before the cumulative I
2 

estimates stayed within +/- 20% of 

the final I
2 

estimate was 467 and 11. No major fluctuations were observed after 500 events and 

15 trials. The 95% confidence intervals provided good coverage over time.  

Conclusion: I
2
 estimates need to be interpreted with caution when the meta-analysis only 

includes a limited number of events or trials. Confidence intervals for I
2
 estimates provide good 

coverage as evidence accumulates, and are thus valuable for reflecting the uncertainty associated 

with estimating I
2
. 
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Introduction 

Measures of heterogeneity are essential in systematic reviews and meta-analyses of clinical 

trials.
1-6

 The most commonly used heterogeneity measure , I
2
, provides an estimate of the 

proportion of variability in a meta-analysis that is explained by differences between the included 

trials rather than by sampling error.
2,3

 Several studies have demonstrated important shortcomings 

of the I
2 

measure.
7-12

 I
2
 estimates may be particularly unreliable in meta-analyses including a 

small number of trials (e.g., less than 10 trials) due to lack of power.
7,8

  I
2 

estimates may be 

underestimated as a result of  time-lag bias.
9,10

 Moreover, comparably higher or lower precision 

in the most recently added trials may inflate or deflate I
2
 under different circumstances.

8,11 

 

Imprecise or biased estimates of heterogeneity can have serious consequences.
6,12

 

Underestimation of heterogeneity may inappropriately prevent exploration of the cause(s) of 

heterogeneity. Overestimation of heterogeneity may inappropriately prevent a meta-analysis 

actually being done. Overestimation may also trigger inappropriate exploration of the cause(s) of 

heterogeneity. For example, large I
2
 estimates may prompt authors to exhaust all possibilities of 

subgroup analyses – a conduct notorious for its tendency to yield findings beyond replication.
13

  

 

In response to the above identified shortcomings, it has been proposed that reported I
2
 estimates 

should be accompanied by their associated 95% confidence interval (CI).
6,12

 Confidence intervals 

may be a desirable addition to the single I
2
 estimate; they give an appreciation of the spectrum of 

possible degrees of heterogeneity (e.g., mild to moderate), allowing for more appropriate 

interpretation of the overall intervention effect estimate. One concern, however, is the possibility 

that the I
2
 estimate’s dependence on power, trial weights, and time-lag bias may cause 
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fluctuations beyond the play of chance. With such fluctuations, the 95% CIs may not retain their 

desired coverage.  

 

To explore these issues we selected a sample of 16 large Cochrane meta-analyses, each including 

a sufficient number of trials, patients and events to provide reliable treatment effect estimates 

and I
2
 estimates. We retrospectively re-analysed the data for each meta-analysis, starting with the 

first chronological trial, and calculating a cumulative I
2 

estimate and its associated 95% CI after 

each new trial was added to the meta-analysis. We then estimated the number of events and trials 

generally needed for I
2
 estimates and 95% CIs to converge. 

 

Statistical framework and theoretical considerations 

In this section we first outline the construct of the I
2 

measure and its associated 95% CI. We 

secondly provide an overview of meta-analysis factors and properties of the I
2 

measure that may 

inappropriately affect the magnitude of the I
2 

estimate. Lastly, we provide the rationale for 

empirically studying I
2 

estimate and their associated 95% CIs over time.  

 

Measuring heterogeneity between studies 

Higgins et al. proposed the now widely popular measure of heterogeneity, I
2
, as well as methods 

for calculating the associated 95% CIs.
2,3

 I
2
 expresses the proportion of variability in a meta-

analysis which is explained by between-trial heterogeneity rather than by sampling error. 

Mathematically, I
2 

is expressed as I
2
=τ

2
/(σ2

+ τ
2
), where τ

2
 denotes the between-trial 

heterogeneity, σ2
 denotes some common sampling error across trials, and σ2

+τ
2
 is the total 

variation in the meta-analysis. I
2
 is usually calculated as (Q-df)/Qx100%, where Q is the 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

69 

 

Cochran’s homogeneity test statistic and df is the degrees of freedom (the number of trials minus 

1).
2,3,14

  Higgins et al. explored a number of methods for obtaining 95% CIs of the I
2
 estimate.

2
   

For this study, we will use the method referred to as the test based method in Higgins et al.
2
 This 

method yields good coverage in most situations and is easy to calculate.
2
 The required 

calculations for this method are outlined in the appendix.  

 

Factors affecting I
2
 estimates 

I
2 

estimates may be unreliable due to lack of power and precision
7,8,11

 due to  the presence of 

time-dependent biases,
9,10

 or due to dependence on trial weights and precisions. 

 

Power and precision 

Since I
2 

is a monotonically increasing function of Cochran’s Q, large values for Q result in large 

I
2 

estimates and small values for Q result in small I
2 

estimates. The power of Cochran’s Q 

depends on the number of trials and the precision of the trials (i.e., the number of patients and 

events in the trials).
7,8,11

 When the number of trials or their respective precision are small, 

Cochran’s Q usually has inappropriately low power to detect heterogeneity, and therefore tends 

to yield conservative (low) test values.
7,8

 To illustrate, the median number of trials is seven for 

Cochrane meta-analyses and 12 for meta-analyses published in paper journals.
15,16

 The median 

sample size in randomized clinical trials is typically less than 100 in most medical 

specialties.
17,18

 Thus, it is common for Cochran’s Q to have low power. This lack of power is 

likely to cause underestimation of I
2
, particularly if there are few events among the included 

trials.
7
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Time-dependent bias 

Time-dependent bias (i.e., time-lag bias and publication bias) is known as a threat to the validity 

of the pooled estimate of effect in meta-analyses.
19-21

 In addition, time-dependent bias may 

compromise the validity of heterogeneity estimates.
9,10

 It is accepted that statistically significant 

trials with large intervention effect estimates usually get published the fastest.
21

 If a meta-

analysis is conducted at a time where all trials yield large promising treatment effects, the 

similarity across trials will result is a relatively small I
2
 estimate. If the meta-analysis is updated 

some years later, this update is likely to include trials that found more moderate, neutral, or 

negative treatment effects. The inclusion of such trials will generate larger estimates of 

heterogeneity. 

 

Dependence on trial weights and precision 

From the mathematical expression I
2
=τ

2
/(σ2

+ τ
2
), it is clear that relatively large sampling errors 

across trials will result in small I
2 

estimates, and conversely, that relatively small sampling errors 

across trials will result in large I
2 

estimates.
2,3,8,11

 The “common” sampling error, σ2
, across trials 

may change considerably over time. For example, if early trials enroll a more homogeneous or 

heterogeneous set of patients than later trials, if they have shorter follow-up than later trials, or if 

changes are made to the definition of the outcome measure (e.g., the definition of myocardial 

infarction has changed considerably over the past decades); then the “common” sampling error 

may be considerably different at a later stage in a meta-analysis than it was in the early stage. 

Provided the between study variance, τ
2
, remains relatively stable over time, changes in the 

“common” sampling error may cause considerable changes in I
2
 estimates over time. Further, if 
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the between-study variance incurs considerable changes over time, changes in the “common” 

sampling error may either inflate or deflate the representation of such changes through the I
2
 

estimate.  

 

The need to assess convergence I
2
 estimates and confidence intervals 

From the above discussion, it is evident that I
2
 estimates may incur considerable fluctuations 

over time. Currently, no studies have explored the magnitude of this problem, and no 

recommendations exist as to how many events or trials are needed to achieve adequately stable I
2
 

estimates in meta-analysis.  

It has been proposed that I
2
 should be reported with their associated 95% CIs. By construct, the 

conventional frequentist CI represents the spectrum of results which would include the true 

underlying value in a particular proportion (typically 95%) if the experiment were independently 

repeated many times. In meta-analysis, we can conceptually think of an ‘experiment’ as a set of 

trials ‘sampled’ randomly from a universe of all possible trials. However, as outlined in the 

above sections, the patterns with which different types of trials are included in a meta-analysis 

over time are typically not random. For example, small trials are likely to precede larger trials. 

Thus, the statistical assumptions on which confidence intervals are based may not hold in many 

meta-analyses. For this reason, it is important to explore, empirically, how 95% confidence 

intervals perform as more trials are accumulated over time.  

 

Material 

In a previous empirical study, we extracted data from 920 binary primary outcome meta-analyses 

in Cochrane systematic reviews.
22

 We defined primary outcomes as one of the first three 
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outcomes in the first comparison group. The data set only included meta-analyses that pooled 

results across all trials; meta-analyses reporting only sub-totals were excluded. For this current 

study, we used the same population of meta-analyses and selected the subset of meta-analyses 

that met the following eligibility criteria:  

- The total number of included trials surpassed 30. We employed this eligibility criterion 

because the number of trials is an important measure of the reliability of estimates of 

variation between trial results (i.e., I
2
). Since we accept the final cumulative I

2
 as 

representing a good approximation of the ‘truth’, it was important that the number of trials 

was large enough to make it likely that the final I
2
 had converged and was stable.  

- The total number of patients surpassed a required information size (i.e., required meta-

analysis sample size) based on α=5% and β=20% (i.e., 80% power). The required 

information size used for each meta-analysis was powered to detect a 25% relative risk 

reduction assuming a control group risk equal to the median of all trials. Calculation of a 

required information size requires an estimation of heterogeneity. For the purpose of 

estimating a reasonable required information size (and allowing confidence that our final 

effect estimate is reliable), we chose to assume a 50% degree of heterogeneity for these 

calculations.
23

 I
2
 is a function of Cochran’s Q and Cochran’s Q is a function of the sum of 

squared differences between each trial effect estimate and the meta-analysed effect estimate. 

Thus, if the meta-analysed effect estimate cannot be considered reliable, I
2
 may not be 

reliable either.  

- The disease of interest was a common disease. We employed this criterion because most 

interventions for common diseases yield intervention effects close to a 25% relative risk 
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reduction or smaller, thus giving credence to our considerations for the required information 

size (above criterion). 

 

From the pool of 920 meta-analyses, 18 meta-analyses were originally eligible for our analysis, 

and after further considerations 16 studies were included.  Post hoc, we elected to exclude two 

meta-analyses. These two meta-analyses each included two significantly different subgroups 

where all or the majority of trials in the second subgroup had been conducted after the trials in 

the first subgroup. We therefore did not find it appropriate to assess convergence of I
2
 in this 

meta-analysis. Table 1 presents the characteristics of the 16 included meta-analyses. 

 

Analysis 

For each of the 16 meta-analyses we calculated and plotted the cumulative I
2
 estimate and 

associated 95% CI after each year of publication. We accepted the final I
2
 estimate (i.e., the I

2
 

estimated based on the meta-analysis including all trials) as representing a good approximation 

of the ‘truth’. First, we assessed the variation of I
2
 estimates over time by calculating the 

difference between the maximum and minimum observed I
2
 estimate over time in each meta-

analysis. We refer to this difference as the fluctuation span of I
2
. Second, we assessed how many 

events and trials were required for the cumulative I
2
 estimate to become stable. We defined the 

considered I
2
 estimates moderately and highly stable at the points where the cumulative I

2
 

estimate came within a +/-20% and a +/-10% absolute distance of the final cumulative I
2
 

estimate and stayed within this distance. Third, we recorded the cumulative number of trials and 

events where the 95% CIs temporarily did include the final I
2 

estimate. At these time points, we 

assessed how far the closest CI limit was to the final I
2 

estimate. That is, if the final I
2 

estimate 
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was above the temporary 95% CI, we calculated the distance between the upper CI limit and the 

final I
2 

estimate, and vice versa if the final I
2 

estimate was below the 95% CI.  

 

Results 

Columns 2-4 in table 2 present the minimum, the maximum, and the fluctuation span of I
2
 values 

observed over time in each of the 16 included meta-analyses. The median, minimum and 

maximum fluctuation spans were 47.5%, 15%, and 81%. Ten of the 16 meta-analyses (62.5%) 

had a fluctuation span larger than 40%. Columns 5-8 in table 2 present the number of trials and 

events required for the cumulative I
2
 estimate to become moderately and highly stable. In 3 of 

the 16 meta-analyses (meta-analyses 14-16) the cumulative I
2
 estimates were moderately stable 

throughout the entire meta-analysis. For the remaining 13 meta-analyses, the median (minimum 

to maximum) number of trials and events required to become moderately stable was 11 (5 to 25) 

and 467 (138 to 1894) respectively.  The median (minimum to maximum) number of trials and 

events required to become highly stable was 20 (10 to 37) and 958 (257 to 2766). Further, 

graphical inspection revealed that, except for one meta-analysis (meta-analysis 10), no major 

fluctuations occurred after the first point where the cumulative meta-analysis included at least 

500 events and 15 trials. 

 

In 3 of the 16 meta-analyses (meta-analyses 7, 9 and 14), the 95% CIs temporarily did not 

include the final I
2 

estimate (see figures 1-4). In meta-analysis 7, the 95% CI at the second 

publication year was 0-69% and the final I
2 

estimate was 77%. The cumulative number of events 

and trials at this point was 349 and 5. In meta-analysis 9, the 95% CI at the fourth publication 

year was 57-88% and the final I
2 

estimate was 54%. The cumulative number of events and trials 
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at this point was 177 and 5. In meta-analysis 14, the 95% CI at the third and fourth publication 

year was 77-94% and 75-93% and the final I
2 

estimate was 74%. The cumulative number of 

events and trials was 349 and 7 at the third year of publication and 407 and 8 at the fourth year of 

publication. 

 

Discussion 

In summary, our findings suggest I
2
 estimates are likely to incur considerable fluctuations when 

a meta-analysis includes less than roughly 500 events or 15 trials, and that 95% CIs for the I
2
 

estimate provide good coverage over time. All instances where the 95% CI temporarily did not 

include the final I
2
 estimate occurred in cumulative meta-analyses with less than 500 events and 

10 trials. However, even in the rare cases where the 95% CIs did not include the final I
2
 estimate, 

it is unlikely that inferences about the degree of heterogeneity based on the temporary 95% CIs 

would have differed from inferences based on the final I
2
 estimate.  

 

Our study offers several strengths. First, it represents the first empirical evaluation of the 

evolution of I
2
 estimates and their associated 95% confidence intervals over time. Second, our 

results provide novel insights on the use of one of the most important inferential measures, I
2
, in 

meta-analytic practice. Third, we selected meta-analyses including a sufficiently large number of 

trials and patients to help ensure a sufficiently reliable sample.  

 

Our study has a number of limitations. We only evaluated I
2
 estimates and their associated 95% 

CIs after each year of publication. Since all of the included meta-analyses included more than 1 

trial for some of the years, it is possible that the I
2
 estimates in some of the 16 meta-analyses may 
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have become stable with a smaller number of events and trials than indicated in table 2. Some of 

the number of events and trials required to reach convergence which we present in table 2 may 

be therefore overestimates. Only 16 meta-analyses were eligible, having covered a limited 

spectrum of medical areas. Our findings may therefore not be generalizable to meta-analyses that 

bear little resemblance to the meta-analyses included in this study. Similarly, we also did not 

examine meta-analyses published in paper journals. A number of differences between Cochrane 

meta-analyses and journal based meta-analyses have been documented (e.g., meta-analyses 

published in paper journals are more likely to present statistically significant findings).
15,16

 One 

could therefore speculate that fluctuations in I
2
 estimates may differ between Cochrane and paper 

journal meta-analyses. In the second section of this paper (statistical framework and theoretical 

considerations), we explained that I
2
 estimates may fluctuate due to lack of power, time-

dependent bias, and evolving trial weights and precisions. We did not perform an in-depth 

assessment of the degrees to which each of these factors caused I
2
 estimates to fluctuate in the 16 

meta-analyses. We believe a simulation study would be more appropriate to explore this issue. 

Finally, we did not examine if any of the review authors took any precautions about uncertainty 

associated with I
2
 estimates (especially in early versions of the systematic reviews where the 

meta-analysis included less than 500 events and 15 trials). However, given the paucity of 

methodological literature on the I
2
 measure just five years ago, it is likely that most Cochrane 

review authors would have been unaware of the issues related to uncertainty associated with 

estimating I
2
.  

 

The median number of trials in a meta-analysis is 7 in Cochrane reviews and 12 in systematic 

reviews published in paper journals.
15,16

 With clinical trial sample sizes typically being smaller 
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than 100,
17,18

  it is likely that most published meta-analyses will incur considerable fluctuations 

(i.e., meta-analyses with less than 500 events and 15 trials). Hence, there is a need for presenting 

the I
2 

estimate with its associated 95% CI. Unreliable I
2
 estimates have potential negative 

implications for the assessment of reliability of intervention effect estimates. Recent literature as 

well as the GRADE initiative have promoted the need for assessing intervention effects in 

relation to the strength of evidence.
23-27

 One of the factors when considering the overall quality 

of evidence is the precision of the pooled estimate of effect, which  is achieved, in part, through 

considering the required (or optimal) information size.
23-27

 However, to carry out such 

assessments reliably it is necessary to have a good idea of the expected degree of heterogeneity 

in the meta-analysis, and if this is not possible, one should at least carry out sensitivity 

assessments based on a plausible spectrum of degrees of heterogeneity. Uninformed use of the 

current I
2
 estimate does not provide a solid basis for such assessments, but interpretation of the I

2
 

estimate in relation to the cumulative amount of evidence and the associated 95% CI does.  

 

Previous studies have already identified limitations associated with the I
2
 measure as well as the 

uncertainty associated with I
2
 estimates.

7,8,11,12
 Our study adds to the previous literature by 

introducing temporality. However, as pointed out above, our findings do have limitations and 

need confirmation in simulation studies and perhaps other empirical studies.  Example papers, 

which put statistical inferences about the degree of heterogeneity in a clinical context, are also 

required. The latter may be realized if confidence intervals became an integral part of the widely 

used systematic review software Review Manager as well as other meta-analysis software 

packages.
28

  

 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

78 

 

In conclusion, I
2
 estimates are likely to fluctuate considerably in meta-analyses with less than 

roughly 500 events and 15 trials. Confidence intervals for I
2
 estimates provide good coverage as 

evidence accumulates, and are thus valuable for reflecting the uncertainty associated with 

estimating I
2
. It is our hope that the next updates of systematic review and meta-analysis 

software packages, such as Review Manager, will include confidence intervals for the I
2
 

estimate.  
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Appendix 

Let Q be Cochran’s homogeneity test statistic and let k be the number of trials included in a 

meta-analysis. The calculation of confidence intervals for I
2
 using the ‘test based’ methods relies 

on a transformation of the I
2 

statistic, H
2
=1/(1- I

2
)=Q/(k-1). The test based method utilizes that 

the statistic Z=√(2Q)-√(2k-3) approximately follows a standard normal distribution. Similarly, if 

we take the natural logarithm of Q we remove much of the skewness of the underlying 

distribution of Q. Because the expectation of Q is k-1, (ln(Q)-ln(k-1))/(SE(ln(Q))) can be 

assumed to approximately follow a standard normal distribution. Equating Z with this expression 

and isolating for SE(ln(Q)) we get 

ln( ) ln( 1)
(ln( ))

2 2 3

Q k
SE Q

Q k

− −
=

− −
 

And since Q=(k-1)H
2
 and k is a constant we have SE(ln(Q))=1/2 SE(ln(H)), and hence 

      

1 ln( ) ln( 1)
(ln( ))

2 2 2 3

Q k
SE H

Q k

− −
=

− −
        (1) 

One problem with this approach is that the standard error approaches zero as H approaches 1. 

Small values of H indicate homogeneity of trial results in which case Q is χ2
 distributed with k-1 

degrees of freedom. In this case we can take an approximate variance of ln(Q/(k-1))=2*ln(H) 

and arrive at 

2

1 1
(ln( )) 1

2( 2) 3( 1)
SE H

k k

 
= − − −                     (2)
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Higgins et all showed via simulation that formula (1) should be used when Q>k and formula (2) 

should be used when Q≤k. Having estimated the standard error of ln(H) one can assume 

approximate normality and derive approximate 95% confidence intervals for H: 

exp(ln(H)±1.965*SE(ln(H))). One can subsequently square the resulting CI limits and transform 

each of them back to a percentage of heterogeneity, I
2
.   

 

 

 

 

 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

81 

 

References 

 (1)  Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical 

significance in meta-analysis: an empirical study of 125 meta-analyses. Statistics in 

Medicine 2000; 19:1707-1728. 

 (2)  Higgins JP, Thompson S. Quantifying heterogeneity in a meta-analysis. Statistics in 

Medicine 2002; 21:1539-1558. 

 (3)  Higgins JP, Thompson S, Deeks J, Altman DG. Measuring inconsistency in meta-

analyses. British Medical Journal 2003; 327:557-560. 

 (4)  Higgins JP, Green S. Cochrane Handbook for systematic reviews of interventions, 

version 5.0.0. John Wiley & Sons; 2009. 

 (5)  Lau J, Ioaniddis JP, Schmid CH. Summing up evidence: one answer is not always 

enough. Lancet 1998; 351:123-127. 

 (6)  Ioaniddis JP. Interpretation of tests of heterogeneity and bias in meta-analysis. Journal of 

Evaluation of Clinical Practice 2008; 14:951-957. 

 (7)  Huedo-Medina T, Sánchez-Meca J, Marín-Martínez F. Assessing heterogeneity in meta-

analysis: Q Statistic or I(2) Index? Psychological Methods 2006; 11(2):193-206. 

 (8)  Mittlböck M, Heinzl H. A simulation study comparing properties of heterogeneity 

measures in meta-analysis. Statistics in Medicine 2010; 25:4321-4333. 

 (9)  Jackson D. The implications of publication bias for meta-analysis' other parameter. 

Statistics in Medicine 2006; 25(17):2911-2921. 

 (10)  Jackson D. Assessing the implications of publication bias for two popular estimates of 

between-study variance in meta-analyses. Biometrics 2007; 63(1):187-193. 

 (11)  Rücker G, Schwarzer G, Carpenter JR, Schumacher M. Undue reliance on I(2) in 

assessing heterogeneity may mislead. BMC Medical Research Methodolgy 2008;(8):79. 

 (12)  Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in 

meta-analysis. BMJ 2007; 335:914-916. 

 (13)  Guyatt G, Wyer P, Ioaniddis.JP. When to Believe a Subgroup Analysis. Users' Guide to 

the Medical Literature: A manual for Evidence-Based Clinical Practice. McGraw-Hill; 

2008. 

 (14)  Cochran WG. The combination of estimates from different  experiments. Biometrics 

1954; 10:101-129. 

 (15)  Moher D, Tetzlaff J, Tricco AC, Sampson M, Altman DG. Epidemiology and reporting 

characteristics of systematic reviews. PLoS Medicine 2010; 4(3):e78. 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

82 

 

 (16)  Tricco AC, Tetzlaff J, Pham B, Brehaut J , Moher D. Non-Cochrane vs. Cochrane 

reviews were twice as likely to have positive conclusion statements: cross-sectional 

study. Journal of Clinical Epidemiology 2009; 62(4):380-386. 

 (17)  Chan AW, Altman DG. Epidemiology and reporting of randomized clinical trials 

published in PubMed journals. Lancet 2005; 365(9465):1159-1162. 

 (18)  Gluud C. The culture of designing hepato-biliary randomised clincial trials. Journal of 

Hepatology 2006; 44:607-615. 

 (19)  Dickersin K. The existence of publication bias and risk factors of its occurence. Journal 

of American Medical Association 1990; 263:1385-1389. 

 (20)  Dwan K, Alman D, Arnaiz J, Bloom J, Chan AW, Cronin E et al. Systematic review of 

the empirical evidence of study publication bias and outcome reporting bias. PLoS 

Medicine 2008; 3:e3081. 

 (21)  Ioaniddis JP. Effect of Statistical Significance of Results on the Time to Completion and 

Publication of Randomized Efficacy Trials. Journal of American Medical Association 

1998; 279(4):281-286. 

 (22)  Thorlund K, Wetterslev J, Awad T, Thabane L, Gluud G. Comparison of statistical 

inferences from the DerSimonian-Laird and alternative random-effects model meta-

analyses - an empirical assessment of 920 primary outcome Cochrane meta-analyses. 

Research Synthesis Methods 2011; Submitted. 

 (23)  Wetterslev J, Thorlund K, Brok J, Gluud C. Estimating required information size by 

quantifying diversity in a random-effects meta-analysis. BMC Medical Research 

Methodology 2009; 9(86). 

 (24)  GRADE Working Group. Grading quality of evidence and strength of recommendations 

in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and 

grading quality of evidence about interventions. Allergy 2009; 64:669-677. 

 (25)  Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P et al. 

GRADE: an emerging consensus on rating quality of evidence and strength of 

recommendations. BMJ 2008; 336(7650):924-926. 

 (26)  Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JP, Thabane L et al. Can 

trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? 

International Journal of Epidemiology 2009; 38:276-286. 

 (27)  Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when 

firm evidence is reached in cumulative meta-analysis. Journal of Clinical Epidemiology 

2008; 61:64-75. 

 (28)  Review Manager (RevMan) [Computer program]. Version 5.0. Copenhagen: The Nordic 

Cochrane Centre, The Cochrane Collaboration, 2008. 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

83 

 

Tables 

 
     

 

Disease/population 

 

Outcome 

Experimental 

intervention 

Control 

Intervention 

 

Period 

Cumulative (final) statistics 

Trials Events Patients I
2 

(1) Colon Cancer Death 

Adjuvant therapy for 

completely resected 

stage II cancer 

No adjuvant therapy 1987-2007 44 3402 17805 0% 

(2) Need for perioperative 

allogeneic blood transfusion 

Exposure to 

allogeneic blood 
Aprotinin 

Blood transfusion & 

blood loss 
1987-2006 96 5348 10144 68% 

(3) Bacterial infections in 

afebrile neutropenic patients 

following chemotherapy 

Febrile 

patients/episodes 

Antibiotic prophylactic 

drugs 

Placebo/no 

intervention 
1973-2005 46 3201 6023 74% 

(4) Fever following cesarean 

section 
Fever Antibiotic prophylaxis Control 1971-2001 45 1504 7180 49% 

(5) Postoperative infection 

after appendectomy 
Wound infection Antibiotics Placebo 1986-1995 70 919 8812 26% 

(6) Pre-eclampsia and its 

complications 

Gestational 

hypertension 
Antiplatelet agents 

Placebo/No 

antiplatelet agents 
1985-2004 33 2080 20701 48% 

(7) Need for perioperative 

allogeneic blood transfusion 

Exposure to 

allogeneic blood 
Cell salvage 

Blood transfusion & 

blood loss 
1979-2003 46 1808 3857 77% 

(8) Smokers 
Smoking cessation at 

6+ months follow-up 

Nicotine replacement 

therapy (any type) 

Placebo/No therapy 

control 
1979-2007 111 5962 43040 23% 

(9) Smokers 
Smoking cessation at 

longest follow-up 
Nursing interventions Control 1987-2005 31 1977 15205 54% 
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(10) Colorectal cancer Recurrence of cancer 
Perioperative blood 

transfusion 
No intervention 1985-2001 36 4026 12127 59% 

(11) Chronic hepatitis C 
Sustained virological 

response  
Ribavirin plus interferon Interferon 1995-2004 54 6126 8354 80% 

(12) Rapid sequence 

induction intubation 
Intubation condition Rucoronium Succinylcholine 1992-2006 37 1948 2690 55% 

(13) Non-small cell lung 

cancer in patients with 

advanced disease 

Response to 

treatment 
Double agent regimens Single agent regimen 1984-2003 33 1410 7175 53% 

(14) Metastatic breast cancer 
Response to 

treatment 
Single agent 

Combination 

chemotherapy 
1975-2003 38 2380 6184 75% 

(15) Postoperative pain in 

adults 

>50% pain relief over 

4 to 6 hours 

Single dose oral 

paracetamol 
Placebo 1975-2006 56 1969 5762 63% 

(16) Pregnant women at 

labor term 
Caesarean section 

Vaginal prostaglandin 

(for induction) 

Placebo/No 

treatment 
1979-1997 31 898 6243 0% 

Table 1 Characteristics of the 16 included meta-analyses. 
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Meta-

analysis 

Minimum  

I
2
 value 

Maximum 

I
2
 value 

Fluctuatio

n span of 

I
2
 

Number of trials required 

to become stabile   

Number of events required 

to become stabile 

Moderately 

(+/-20%) 

Highly    

(+/-10%)  

Moderately 

(+/-20%) 

Highly         

(+/-10%) 

(1) 0% 24% 24% 24 33  1297 2096 

(2) 42% 74% 32% 11 35  276 2766 

(3) 46% 74% 28% 5 19  149 924 

(4) 2% 54% 52% 9 28  287 992 

(5) 0% 51% 51% 25 34  335 453 

(6) 0% 51% 51% 16 16   562 562 

(7) 24% 78% 54% 12 12  597 597 

(8) 0% 48% 48% 11 33  610 1509 

(9) 0% 77% 77% 11 21  537 1393 

(10) 24% 69% 45% 18 18  1894 1894 

(11) 0% 81% 81% 6 12  138 1989 

(12) 10% 57% 47% 13 37  467 1948 

(13) 0% 63% 63% 8 18  199 580 

(14) 65% 88% 23% - 10  - 475 

(15) 51% 66% 15% - 24  - 879 

(16) 0% 18% 18% - 13  - 257 

Table 2 Presents the fluctuation span of I
2
 values and the number of trials and events required to become stabile. 

  

 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

86 

 

 

Figures 

Figure 1 Presents the evolution of the cumulative I2 estimates and their associated 95% confidence intervals (CIs) over the accumulation of events in meta-analyses (1) 

to (8). The cumulative I
2
 estimates are represented by the dot-dashed line (        ), and their associated cumulative 95% CIs are represented by the dotted lines (         ). 
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Figure 2 Presents the evolution of the cumulative I
2
 estimates and their associated 95% confidence intervals (CIs) over the accumulation of events in meta-analyses (9) 

to (16). The cumulative I
2
 estimates are represented by the dot-dashed line (        ), and their associated cumulative 95% CIs are represented by the dotted lines (         ). 
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Figure 3 Presents the evolution of the cumulative I
2
 estimates and their associated 95% confidence intervals (CIs) over the accumulation of trials in meta-analyses (1) 

to (8). The cumulative I
2
 estimates are represented by the dot-dashed line (        ), and their associated cumulative 95% CIs are represented by the dotted lines (         ). 
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Figure 4 Presents the evolution of the cumulative I

2
 estimates and their associated 95% confidence intervals (CIs) over the accumulation of trials in meta-analyses (9) 

to (16). The cumulative I
2
 estimates are represented by the dot-dashed line (        ), and their associated cumulative 95% CIs are represented by the dotted lines (         ). 
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Summary 

Background 

In random-effects model meta-analysis, the conventional DerSimonian-Laird (DL) estimator typically 

underestimates the between-trial variance. Alternative variance estimators have been proposed to address 

this bias.  

Objectives 

To empirically compare statistical inferences from random-effects model meta-analyses based on the DL 

estimator and four alternative estimators, as well as distributional assumptions (normal and t-distribution) 

about the pooled intervention effect. 

Methods 

We evaluated discrepancies of p-values, 95% confidence intervals in statistically significant meta-

analyses, and the degree (percentage) of statistical heterogeneity (e.g., I
2
) across 920 Cochrane primary 

outcome meta-analyses.  

Results 

In total, 409 of the 920 meta-analyses were statistically significant with the DL meta-analysis and 511 

were not. Compared to the DL estimator, the four alternative estimators yielded p-values and confidence 

intervals that could be interpreted as discordant in up to 11.6% or 6% of the included meta-analyses 

pending whether a normal- or a t-distribution of the intervention effect estimates were assumed. Large 

discrepancies were observed for the measures of degree of heterogeneity when comparing DL to each of 

the four alternative estimators.  

Conclusion 

Estimating the degree (percentage) of heterogeneity based on less biased between-trial variance 

estimators seems preferable to current practice. Disclosing inferential sensitivity of p-values and 

confidence intervals may also be necessary when borderline significant results have substantial impact on 

the conclusion. 
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Introduction 

Meta-analysis combining the results of randomised clinical trials is considered the best available 

estimate of an intervention effect.
1
 Trials in a meta-analysis are often heterogeneous and need to 

be analysed accordingly.
1-5

 When the underlying sources of heterogeneity between trials are 

unidentifiable and therefore cannot be explained, a random-effects model may be adopted to 

obtain an average estimate of the intervention effects.
1-4

 Currently, the vast majority of published 

systematic reviews including meta-analysis use the well-known random-effects model proposed 

by DerSimonian and Laird (DL), which entails estimating the between-trial (heterogeneity) 

variance with the DL estimator, and obtaining confidence intervals and p-values under the 

assumption that the meta-analysed intervention effect estimate follows a normal distribution.
2
 

Several simulation studies have demonstrated that the DL estimator is likely to underestimate the 

between-trial variance.
6-12

 When this happens, the p-value for the meta-analysed intervention 

effect may become artificially small and the confidence interval (CI) artificially narrow. Review 

authors therefore risk falsely concluding that an experimental intervention is effective. 

Furthermore, underestimation of the between-trial variance - and thus underestimation of 

statistical heterogeneity - may inappropriately draw the authors’ and readers’ attention away 

from the need to explore heterogeneity. These issues raise concern as to whether or not the 

statistical inferences from DL random-effects model meta-analyses in systematic reviews are 

appropriate.  

 

Several alternative between-trial variance estimators are available - some of which have been 

demonstrated to produce less downward biased estimates, and thus, more accurate p-values and 

confidence intervals.
6-11;13;14

 Further, robust random-effects model variance estimation, which 
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assumes the meta-analysed intervention effect estimate follows a t-distribution, has been shown 

to yield reliable confidence intervals (i.e., consistently good coverage) that are less sensitive to 

the choice of a specific between-trial variance estimator.
8;12;15-17

 Unbiased variance and 

heterogeneity estimation is especially important in meta-analyses of primary outcomes because 

they typically shape the conclusions of systematic reviews. The superiority of these alternative 

variance estimators has only been demonstrated through simulation studies. In practice, it is 

unclear how often use of these alternative variance estimators will change the estimated p-value, 

the confidence interval, and the magnitude of the heterogeneity to the extent where the statistical 

inferences change.  

 

Objectives 

To inform the above mentioned issues we performed a large scale empirical evaluation of 

primary outcome meta-analyses (see definition in data extraction section) from systematic 

reviews of clinical trials published in The Cochrane Library. We furthermore provide two 

illustrative examples where the use of alternative variance estimators could potentially have 

impacted the conclusions drawn in the original systematic reviews.  

 

Methods 

In this section we first outline the statistical framework for the random-effects model. We then 

provide a description of the DL estimator followed by a description of four alternative 

estimators. The alternative estimators were selected among approximately 15 estimators we 

came across in the literature.
2;6;8-11;13-15;18

 The alternative estimators were selected based on the 

fact that previous studies had shown them to be less biased than the DL estimator or that they 
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had received attention in recent simulation studies. We limited our analyses to the four 

estimators to retain simplicity in the presentation of results.
2;8-10;12;13

    

Lastly, we describe the measures we employ to assess the extent and frequency with which the 

use of alternative between-trial variance estimators in meta-analysis may cause important 

changes in the statistical inferences.  

  

The conventional random-effects meta-analysis model 

Assume we have k independent trials. Let Yi denote the estimate of the effect from ith trial. Let µi 

be the true intervention effect of the ith trial, and let σi
2
 denote the variance of µi. The trial 

specific intervention effects are assumed to vary across trials, with an underlying true effect µ, 

and a between-trial variance τ2
. In the random-effects model the observed effect measure, Yi, is 

then assumed to satisfy the distributional relationship Yi~N(µ,σi
2
+τ2

), and the trial weights, wi
*
, 

are set at the inverse of the trial variances wi
*
=1/(σi

2
+τ2

). In practice neither σ1
2
,…,σk

2
, nor τ2

 are 

known. The within-trial variances are typically estimated using the trial sampling variances 

2 2

1
ˆ ˆ, , kσ σ…

 
and the between-trial variance 2τ̂  is obtained using a specific estimator (e.g., the DL 

estimator). The pooled intervention effect is obtained as a weighted pooled estimate of the 

observed intervention effects in the included trials  

*

1

*

1

ˆ

ˆ

ˆ

k

i i

i
w k

i

i

w Y

w

µ =

=

⋅
=
∑

∑
      (1) 
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its standard error (SE) is estimated as ( ) *ˆ ˆ1/w ii
SE wµ = ∑ , and the two-sided (1-α/2)% CI is 

given by ˆ
wµ ± z1-α/2 ⋅ SE( ˆ

wµ ), where z1-α/2 is the (1-α/2)th percentile from the standard normal 

distribution. Thus, the conventional 95% CI is given by ˆ
wµ ±1.96⋅ SE( ˆ

wµ ). 

 

Weighted variance estimation assuming a t-distribution  

A promising alternative which has not yet been used widely in practice consists of assuming that 

the pooled treatment effect follows a t-distribution and subsequently calculating a ‘weighted 

extension’ of the general formula for the variance of the pooled treatment effect.
16;19

  

 

( )
* 2

*

ˆ ˆ( )
ˆ

ˆ( 1)

i i wi
w w

ii

w Y
Var

k w

µ
µ

−
=

−
∑

∑
 

 

And as always we have ( ) ( )ˆ ˆ
w w w wSE Varµ µ= . Hartung showed that the statistic 

( ) ( )ˆ ˆ/w w wt SEµ µ µ= −  follows a t-distribution with k-1 degrees of freedom. Thus, two-sided (1-

α/2)% CI based on the weighted variance is given by ˆ
wµ ± tk-1,1-α/2 ⋅ SE( ˆ

wµ ), where tk-1,1-α/2 is the 

(1-α/2)th percentile from a t-distribution with k-1 degrees of freedom.  

This approach has demonstrated robustness in simulation studies, in which, the confidence 

intervals have generally provided actual coverage close to the nominal coverage,
8;9;15;17

 and test 

statistics have generally exhibited good control of the desired type I error rate.
11;20;21

 Further, 

simulation studies have also suggested that results under the ‘weighted variance’ approach are 

less affected by the choice of between-trial variance estimator, than the conventional random-
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effects approach which assumes the meta-analysed intervention effect estimates follow a normal 

distribution (see above).
8;9;15;17

   

 

Random-effects model between-trial variance estimators 

For this study we considered the DL estimator and the four alternative between-trial variance 

estimators described below.
2;8-10;12;13

 

  

The DerSimonian-Laird (DL) between-trial variance estimator 

In the random-effects model approach proposed by DL, the between-trial variance is estimated 

using a method of moments based estimator.
2
 Let 2ˆ ˆ1/i iw σ=  denote the estimated weights under 

a fixed-effect model, and let ( ) ( )ˆ ˆ ˆ/FE i i ii i
w Y wµ = ⋅∑ ∑ be the weighted mean effect size under 

the fixed-effect model. Cochran’s homogeneity test statistic, 2ˆ ˆ( )i i FEi
Q w Y µ= −∑ , is used as the 

basis of the DL estimator, 2ˆ
DLτ , since its 1

st
 moment takes the form 

( ) ( )2

1 2 1
ˆ( 1) ( /DLE Q k S S Sτ= − + − , where 1

ˆ
ii

S w=∑  and 2

2
ˆ

ii
S w=∑ .  Isolating for 2ˆ

DLτ  then 

yields the expression for the moment estimator of the between-trial variance  

 

2

1 2 1

( 1)
ˆ max 0,

/
DL

Q k

S S S
τ

 − −
=  −       (2) 

 

Simulation studies have shown that the DL estimator works well for meta-analyses that are 

subject to ignorable or little heterogeneity, but tends to underestimate the between-trial variance 

in meta-analyses that are subject to moderate or substantial heterogeneity.
6-8;10;15

  This 
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underestimation may typically result in poor control of the type I error and poor coverage of the 

associated random-effects confidence intervals.
6-8;11;15

 For example, normal distribution based 

95% confidence intervals based on the DL estimator will often provide coverage anywhere 

between 80% and 93% depending on the meta-analysis scenario.
6-8;15

 One comprehensive 

simulation study measured the mean square error (MSE) of seven estimators and found that 

except for meta-analyses with extreme heterogeneity, the DL estimator is less variable than the 

six other estimators.
10

 The difference in variability between the DL estimator and other 

estimators is inversely correlated with the number of trials in a meta-analysis.
10

 The authors of 

the study nevertheless commented that the reduced variability in meta-analysis including only a 

few trials may be explained by the facts that Q is underpowered when the number of trials is 

small, in which case 2ˆ
DLτ  is truncated to 0 when Q<k-1.

10
  

 

The Hartung and Makambi (HM) estimator  

The Hartung and Makambi (HM) estimator is a modification of the DerSimonian-Laird estimator 

which is always positive (i.e., does not need to be truncated to zero when the estimate is smaller 

than zero).
12

 It is given by  

( ) ( )

2
2

1 2 12 ( 1) ( / )
HM

Q

k Q S S S
τ =

⋅ − + ⋅ −      (3) 

 

Where Q, S1, and S2 are given as above. One simulation study showed that the HM estimator  

exhibits better control over the type I error than the DL estimator.
11

 However, in some scenarios 

the HM estimator still did not provide type I error close to the desired level. Another simulation 
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study showed that the HM estimator yields better or similar confidence interval coverage 

compared to the DerSimonian-Laird estimator in continuous data meta-analysis scenarios.
8
   

 

The restricted maximum likelihood (REML) estimator 

Restricted maximum likelihood (REML) estimation is a generally well-known estimation 

technique in the statistical literature. The between-trial variance REML estimator in meta-

analysis is not widely used in practice, but tends to be included in simulation studies exploring 

aspects of heterogeneity estimation in meta-analysis, and can also be used for between-trial 

variance estimation in meta-regression. The REML between-trial variance estimate, 2ˆ
REMLτ , is 

obtained through a double-iterative process. The first iteration involves (iterative) estimation of 

the maximum likelihood (ML) estimator of the between-trial variance, 2ˆ
MLτ , which is given by  

 

      

( )( )2* 2 2

2 1

* 2

1

ˆ ˆ ˆ( )

ˆ

ˆ( )

k

i i ML i

i
ML k

i

i

w Y

w

µ σ
τ =

=

− −
=
∑

∑
    (4)

 

 

where 2 2ˆ ˆ ˆ1/( )i iw σ τ= + , 2τ̂  is any estimate of the between-trial variance, and ˆ
MLµ  is the 

weighted pooled estimate of the intervention effect obtained as in equation (1) but with weights 

ˆ
iw instead of *ˆ

iw .
8;10

 The ML estimator is obtained by iterating over 2ˆ
MLτ and ˆ

MLµ , until 2ˆ
MLτ has 

converged. If we let 2

( )
ˆ

ML iτ
 
and 2

( 1)
ˆ

ML iτ −  denote the current and the preceding iterations’ estimates, 

one typical convergence criterion could be that 2 2 2

( ) ( 1) ( 1)
ˆ ˆ ˆ| | /(1 ) 0.0001ML i ML i ML iτ τ τ− −− + < .

8;10
 The 

initial value of the between-trial variance,  2

0̂τ , can be estimated with any other non-iterative 
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estimator or chosen as any plausible value respective to the scale on which trial results are being 

pooled (e.g., the log odds ratio scale). The second iteration round uses 2ˆ
MLτ and ˆ

MLµ  as initial 

estimates for  2ˆ
REMLτ  and ˆ

REMLµ  to estimate 2ˆ
REMLτ

 

 
 

( )( )2* 2 2

2 1

* 2 *

1 1

ˆ ˆ ˆ( )
1

ˆ

ˆ ˆ( )

k

i i REML i

i
REML k k

i i

i i

w Y

w w

µ σ
τ =

= =

− −
= −
∑

∑ ∑
  (5)

 

 

Simulation studies have found that the REML estimator is typically less downwardly biased than 

the DL estimator.
6;10

 One should, however, note that these simulation studies also suggest the 

REML estimator is sub-optimal compared to other proposed estimators. 
6;10

 One simulation study 

showed that the REML estimator was generally equally or slightly more variable (measured as 

associated MSE) than the DL estimator.
10

 

 

The Hedges (HE) estimator 

The Hedges (HE) estimator is an analogue to the variance components estimator in a random-

effects analysis of variance (ANOVA).
13

 The HE estimator is a simple unweighted variance 

estimator given by 

  

( )2 2

2 1 1

ˆ ˆ

ˆ
1

k k

i uw i

i i
HE

Y

k k

µ σ
τ = =

−
= −

−

∑ ∑
     (6) 
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where ˆ
uwµ  is the unweighted mean of the observed trial effect estimates, Yi . Simulation studies 

have shown that under the assumption that the pooled intervention effect follows a normal 

distribution, the HE estimator works well for meta-analyses that are subject to substantial 

heterogeneity, but tends to overestimate the between-trial variance in meta-analyses that are 

subject to ignorable or little heterogeneity.
8;10

 One simulation study showed that the HE 

estimator was generally considerably more variable than the DL estimator.
10

 For example, in 

simulated meta-analyses with fewer than 20 trials where the heterogeneity was not extreme, the 

MSE of the HE estimator was 25% to 100% larger than the MSE of the DL estimator across 

various scenarios.
10

 

 

The Sidik and Jonkman (SJ) estimator 

The Sidik and Jonkman (SJ) estimator is based on the usual statistical method for estimating the 

model error variance in a weighted linear model.
9
 The SJ estimator is given by  

 

( )2

0
2 1

ˆ ˆ

ˆ
1

k

i i w

i
SJ

v Y

k

µ
τ =

−
=

−

∑
      (7) 

 

where 2 2

0
ˆ ˆ ˆ( / ) 1i iv σ τ= + , 2

0̂τ  is an initial estimate of the between-trial variance, typically the HE 

estimator, and 0
ˆ

wµ  is the weighted random-effects pooled estimate using τ0
2
 as the estimate for 

the between-trial variance. When 2

0̂τ  
is truncated to zero, one may instead set 2

0̂τ  to 0.01. 

Simulation studies have shown that the SJ estimator is generally the least downwardly biased 

among estimators, and authors have previously recommended this estimator as the preferred 

choice for estimating the between-trial variance.
8-10

 The SJ estimator particularly works well for 
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meta-analyses that are subject to mild or moderate heterogeneity, but may yield slight 

underestimates for meta-analyses that are subject to substantial heterogeneity.
10

 One simulation 

study, however, showed that the SJ estimator was generally more variable than the DL 

estimator.
10

 For example, in simulated meta-analyses with fewer than 20 trials where the 

heterogeneity was not extreme, the MSE of the SJ estimator was 20% to 50% larger than the 

MSE of the DL estimator across various scenarios.
10

 

 

Measuring frequency and magnitude of changes in statistical inferences 

Between-trial variance estimates from different estimators are seldom equal. Random-effects 

model meta-analyses based on different estimators will therefore typically not yield identical p-

values, confidence intervals, percentage estimates of heterogeneity, and other summary statistics. 

However, differences between summary statistics are only important if they are large enough to 

alter the inferences drawn about the investigated intervention effect. Below we describe the 

measures we employ to assess differences between the p-values, confidence intervals, and 

estimated degrees of heterogeneity resulting from the considered random-effects model 

approaches. 

 

P-values and agreement in statistical significance 

P-values are commonly assessed on the basis of whether they are smaller than some given 

threshold – that is, whether the results can be considered statistically significant or not. 

Conventionally meta-analyses use a threshold of 0.05. We therefore assessed agreement between 

p-values based on this threshold. That is, if the p-values from two random-effects meta-analyses 

based on different between-trial variance estimators lie on the same side of 0.05, we considered 
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the two estimators to agree on statistical significance. If the p-values lie on each side of 0.05, we 

considered the two estimators to disagree on statistical significance.  

           

Disagreement on statistical significance, as defined above, may however not be sufficiently 

pronounced to alter the inferences about the overall treatment effect (and thus, possibly the 

conclusion of the systematic review). For example, if one p-value based on one between-trial 

variance estimator yields a borderline statistically significant result (e.g., p=0.03) and another p-

value based on another between-trial variance estimator yields a borderline ‘not statistically 

significant’ result (e.g., p=0.07), the disagreement on statistical significance may not be 

sufficiently pronounced to alter the statistical inferences about the overall treatment effect, and 

thus, to impact the conclusion of the systematic review. Conversely, in a meta-analytic scenario 

where the smallest of the two p-values yields a strongly significant result (e.g., p=0.002) or 

where the largest p-value yields clear absence of statistical significance (e.g., p=0.36), using one 

p-value instead of the other is more likely to alter the inferences about the overall treatment 

effect and thus the conclusion of the systematic review. There are many potential ways of 

assessing how pronounced disagreement on statistical significance is. For this paper, we chose, 

as post-hoc analyses, to group p-values into four categories: ‘p>0.10’, ‘p≤0.10 and p>0.05’, 

‘p≤0.05 and p>0.01’ and ‘p≤0.01’ – each representing what can roughly be interpreted as ‘weak’, 

‘borderline’, ‘moderate’, and ‘strong’ statistical significance. If two p-values (from two different 

estimators) fall into categories next to each other, this may not be inferentially problematic, 

whereas two p-values that are two or three categories apart may have considerable potential to 

affect the meta-analytic inferences, and thus, the conclusion of the systematic review. 
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Agreement between confidence intervals in statistically significant meta-analyses 

If two random-effects model meta-analyses based on two different between-trial variance 

estimators are both statistically significant, but the widths of the two resulting CIs differ 

considerably, those two meta-analyses are likely to render different inferences about the 

investigated intervention. For example, if one between-trial variance estimator yields a 

borderline significant meta-analysis (e.g., the estimated relative risk of a clinical important event 

is less than 1.00 and the upper limit of the 95% CI is 0.99) and another between-trial variance 

estimator yields a 95% CI that precludes all clinically irrelevant intervention effects (e.g., the 

upper limit of the 95% CI is 0.90), the two estimators will typically render different inferences 

about the effect of the investigated intervention – or at least about the strength of evidence 

supporting the observed intervention effect. Investigators are likely to perceive the importance of 

differences between CIs differently. For this study, we arbitrarily defined an important difference 

between two confidence intervals as the situation where the confidence limit farthest away from 

1.00, is more than twice as far away from 1.00 than the other limit is from 1.00, in absolute 

terms. For example, if the lower limit of the confidence interval that is farthest away from 1.00 is 

1.30, then the lower limit of the other confidence interval would have to be smaller than 1.15 to 

constitute an important difference because 1.15 signifies point that splits the distance between 

1.00 and 1.30 in two equal halves. However, when both CI limits are very close to 1.00, they will 

most likely yield highly similar inferences for the particular meta-analysis scenario. Thus, for 

this study we considered all differences between CI limits unimportant if both CI limits were 

between 0.90 and 1.00, or between 1.00 and 1.10. 

 

Exploring differences between estimates of heterogeneity 
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The degree of heterogeneity between trial effect estimates is commonly assessed with the I
2
 

statistic, which measures the proportion of variance of the pooled effect due to variation between 

trials rather than sampling error.
22

 In short, I
2
can also be said to estimate the percentage of 

heterogeneity in a meta-analysis data set.  I
2
 is calculated as follows 

 

2 1
max 0,

Q k
I

Q

 − +
=  

       (8) 

 

However, I
2
 is just one candidate measure for the percentage of heterogeneity in a meta-analysis, 

and because, mathematically speaking, it is not a function of the between-trial variance, it cannot 

be used to compare the percentage of heterogeneity described by use of different between-trial 

variance estimators. An alternative way of measuring the proportion of variance of the pooled 

effect due to variation between trials rather than sampling error, is to utilize the assumptions that 

in the fixed-effect model the variation in a meta-analysis is assumed to be sampling error only, 

whereas under the random-effects model the variation in a meta-analysis is assumed to be a 

combination of sampling error and variation between trials.
22;23

 The proportion of variation due 

to sampling error can be estimated by dividing the total variance in the fixed-effect model by the 

pooled variance in the random-effects model.
22;23

 By subtracting this proportion from 1.0 

(100%), one will have an alternative estimate of the proportion of variation between trials rather 

than sampling error. 

Let 2ˆ ˆ
i iw σ=  be the trial weights in the fixed-effect model, and * 2 2ˆ ˆ ˆ1/( )i i Ew σ τ= +  be the trial 

weights in the random-effects model, where 2ˆ
Eτ  

 
is any estimate of the between-trial variance. 

The pooled variance in the fixed-effect model is calculated as ( )ˆ1/F ii
v w= ∑  and the pooled 
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variance in the random-effects model is calculated as ( )*ˆ1/R ii
v w= ∑ . With respect to any 

between-trial variance estimator we can now calculate the percentage of heterogeneity in the 

meta-analysis that is not due to sampling error 
23

 

 

2 1 F

R

v
D

v
= −

     (9)
 

 

That is, we calculate DDL
2
, DHM

2
, DREML

2
, DHE

2
, and DSJ

2
, when using the DL, HM, REML, HE, 

or SJ estimator in a random-effects model meta-analysis, respectively.  

 

Analysis 

Data extraction 

We scanned the Cochrane Database of Systematic Reviews in The Cochrane Library, Issue 1, 

2009, for primary outcome meta-analyses. We characterised primary outcome meta-analyses as 

those reporting on a binary outcome among the first three of all meta-analysed outcomes. We 

only included one meta-analysis per systematic review. We only included meta-analyses that 

included at least three trials and pooled the results from all the included trials (i.e., meta-analyses 

with sub-group analyses reporting only sub-totals were excluded). 

 

Statistical analysis 

For all eligible meta-analyses we calculated the relative risks as well as the corresponding p-

value, the associated 95% CI based on the conventional ‘normal distribution’ random-effects 

approach and the associated 95% CI based on the ‘weighted variance’ t-distribution approach. 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

106 

  

Under the normal distribution approach we also calculated the degree of heterogeneity D
2
 using 

the DL, HM, REML, HE, and SJ estimators. For trials with zero events in one intervention group 

we used constant continuity correction by adding a constant of 0.5 to the number of events and 

number of non-events in each intervention group.
24

  As sensitivity analysis, we used intervention 

group (treatment arm) continuity correction by adding 1 divided by the number of patients in the 

other group to the number of events and non-events in each group.
24

 As sensitivity analysis, we 

also repeated all analyses using odds ratio as the effect measure. Lastly, because p-values and 

confidence intervals depend on the precision we performed sensitivity analysis using a surrogate 

for the precision – the cumulative number of patients. For this analysis, we calculated the 

optimal information size (OIS, i.e., the required meta-analysis sample size) required to detect a 

relative risk reduction of 25%, based on α=5%, β=20%, and assuming a control group risk equal 

the median across trials within each meta-analysis.  

All analyses were performed in R. v.2.12.
25
 

 

Agreement in statistical significance 

We performed pair wise comparisons between the DL and each of the other estimators under the 

normal distribution approach and separately under the t-distribution approach. We created eight 

(4+4) 2x2 tables for the number (and percentage) of meta-analyses where the DL estimator 

compared to an alternative estimator (the HM, REML, HE or the SJ estimator) yielded the same 

or the opposite inference with regard to statistical significance. For each of these 2x2 tables we 

calculated the kappa value, κ, and associated 95% confidence intervals to measure agreement in 

statistical significance. We performed post-hoc analyses to assess how pronounced the 

disagreement of statistical significance was. For these analyses we grouped p-values from meta-
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analyses where disagreement was observed into the four categories: ‘p>0.10’, ‘p≤0.10 and 

p>0.05’, ‘p≤0.05 and p>0.01’ and ‘p≤0.01 (as explained in the previous section) and recorded 

the number of meta-analyses where the p-values fell into the different categories. For each 

comparison, we created corresponding 4x4 tables and calculated the kappa value and associated 

95% confidence intervals. 

 

Agreement between confidence intervals in statistically significant meta-analyses 

For normal distribution based and t-distribution based meta-analyses where both the DL 

estimator and an alternative between-trial variance estimator yielded statistical significance (i.e., 

p<0.05), we plotted the 95% CI limit from the DL estimator that was closest to 1.00 (x-axis) 

against the 95% CI limit from the alternative estimator that was closest to 1.00 (y-axis). That is, 

if the meta-analysed RR was smaller than 1.00 we plotted upper 95% CI limits, and if the pooled 

RR was larger than 1.00 we plotted the lower 95% CI limits.  

We plotted a line with slope 1, illustrating the points of complete agreement between confidence 

intervals. We also plotted a line with slope 0.5 and a line with slope 2, illustrating the threshold 

for when one CI limit was closer to 1.00 than to the other CI limit. Lastly, we counted the 

number of ‘important’ discrepancies between CI limits according to the criteria put forward in 

the methods section.  

 

Exploring differences between estimates of heterogeneity 

To compare the degree of heterogeneity arising from each estimator we constructed four plots 

with the estimated DDL
2
 on the x-axis, and the estimated DHM

2
, DREML

2
, DHE

2
, and DSJ

2
 

respectively on the y-axis.  
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Results 

A total of 920 meta-analyses were eligible for our analyses.  

 

Agreement in statistical significance 

Comparisons under the normal distribution random-effects model 

Table 1 presents the number of normal distribution random-effects meta-analyses where the DL 

estimator, compared to the HM, REML, HE and SJ estimator yielded the same or the opposite 

inference with regard to statistical significance, using the constant continuity correction for 

handling zero-event arms.  

 

Using the normal distribution random-effects model approach, the DL estimator yielded a 

statistical significance result in 414 (44.5%) of the 920 meta-analyses. Twenty eight (6.8%) of 

these 414 statistically significant DL meta-analyses were not statistically significant with the HM 

estimator, 4 (1.0%) were not statistically significant with the REML estimator, 48 (11.6%) were 

not statistically significant with the HE estimator, and 47 (11.4%) were not statistically 

significant with the SJ estimator.  

 

The DL estimator did not yield statistical significance in 506 of the 920 meta-analyses. Two 

(0.4%) of these meta-analyses became statistically significant with the HM estimator, 9 (1.8%) 

with the REML estimator, 15 (3.0%) with the HE estimator, and 7 (1.4%) with the SJ estimator. 

Agreement measured with kappa-values revealed ‘very good’ agreement between the DL and 

HM estimators ( κ̂ = 0.93, 95% CI 0.91-0.96), the DL and REML estimators    ( κ̂ = 0.97, 95% CI 

0.96-0.99), the DL and HE estimators ( κ̂ = 0.86, 95% CI 0.83-0.89), and the DL and SJ 
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estimators ( κ̂ = 0.88, 95% CI 0.85-0.91). Sensitivity analyses using ‘treatment arm’ continuity 

correction for handling zero-events, sensitivity analysis using odds ratio as the measure of effect, 

and sensitivity analysis by the cumulative number of patients revealed similar proportions of 

agreement in statistical significance and thus, similar kappa values (see tables A.1 to A.6 in the 

supplementary material). In the post-hoc analysis assessing how pronounced disagreements on 

statistical significant were, kappa values for the created 4x4 table (table 2) were slightly smaller 

than the kappa values for the 2x2 tables. However, all kappa values in the post-hoc analysis were 

larger than 80%. Of the 920 meta-analysis, 849(93%), 877(95%), 804(87%), and 811(88%) of p-

values fell into the same category of strength of statistical significance when comparing the DL 

random-effects model to the HM, REML, HE, and SJ random-effects models, respectively. 

Further, 65(7%), 38(4%), 86 (9%) and 93(10%) fell into categories next to each other, and only 

6(0.7%), 5(0.6%), 30(3.2%) and 16(1.7%) were two or three categories apart when comparing 

the DL random-effects model to the HM, REML, HE, and SJ random-effects models, 

respectively.  

  

Comparisons under the t-distribution random-effects model  

Table 3 presents the number of t-distribution random-effects meta-analyses where the DL 

estimator, compared to the HM, REML, HE and SJ estimator yielded the same or the opposite 

inference with regard to statistical significance. 

The DL estimator yielded a statistical significance result in 326 (35.4%) of the 920 meta-

analyses. Using the t-distribution random-effects approach, the proportions of statistically 

significant DL meta-analyses that were not statistically significant using an alternative estimator 

were approximately half or what they were under the normal-distribution random-effects 
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approach.  The proportions of non-statistically significant DL meta-analyses that became 

statistically significant with an alternative estimator were between 0.7% and 1.5% across the four 

alternative estimators. Agreement measured with kappa-values revealed ‘very good’ agreement 

between the DL estimator and all alternative estimators as kappa estimates spanned from 0.94 to 

0.97 across comparisons with lower CI limits of 0.92 or higher. 

The post-hoc analysis presented in table 4 confirmed that disagreements on statistical 

significance are less pronounced under the t-distribution random-effects approach. In particular, 

kappa value estimates for all comparisons were 0.90 or larger, and the number and proportion of 

disagreements seen in table 4 (normal distribution) decreased by approximately 50% under the t-

distribution random-effects approach. 

 

Agreement between confidence intervals in statistically significant meta-analyses 

Results for the normal distribution random-effects model 

Figure 1 presents the plots of DL 95% CI limits closest to 1.00 (x-axis) against the 95% CI limits 

closest to 1.00 of the HM, REML, HE and SJ estimators for the normal distribution based 

random-effects model meta-analyses where both the DL estimator and the HM, REML, HE or SJ 

estimator yielded statistical significance. Overall, the differences between the 95% CIs based on 

HM and REML estimators and the 95% CIs based on the DL estimator were small. We counted 

4 and 5 (both 1%) HM and REML meta-analyses where the differences would be considered 

important according to our criteria put forward in the methods section. Overall, the HM and SJ 

estimators were most likely to yield wider 95% CIs than that of the DL estimator but not 

infrequently did the opposite occur. We counted between 11 (3%) and 12 (4%) HE and SJ meta-

analyses where the differences would be considered important according to our criteria put 
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forward in the methods section. Sensitivity analyses using ‘intervention group’ continuity 

correction for handling zero-events and sensitivity analysis using odds ratio as the measure of 

effect yielded similar results in the graphical inspection of CI limits as well as the counts of 

important discrepancies. 

 

Results for the t-distribution random-effects model 

Figure A.1 in the supplementary material presents the plots of DL 95% CI limits closest to 1.00 

(x-axis) against the 95% CI limits closest to 1.00 of the HM, REML, HE and SJ estimators for 

the t-distribution based random-effects model meta-analyses where both the DL estimator and 

the HM, REML, HE or SJ estimator yielded statistical significance. Barely any important 

discrepancies were observed under the t-distribution based random-effects model. 

 

Exploring differences between estimates of heterogeneity 

Figure 2 presents the estimated degrees of heterogeneity (i.e., D
2
 estimates) under the DL 

random-effects model meta-analyses plotted against the estimated degrees of statistical 

heterogeneity under the HM, REML, HE, or SJ random-effects model meta-analyses. The 

estimated degree of heterogeneity was almost consistently larger with the HM estimator 

compared to the DL estimator (a small proportion yielded up to 2% smaller estimates). The 

difference between the two, however, narrowed as DL estimates become larger. When the DL 

estimate was truncated to 0% with DL, the HM estimator yielded estimates anywhere between 

0% and 90%, but most frequently below 60%. When the DL estimator yielded mild 

heterogeneity estimates (i.e., 30%), the HM estimator seems to yield moderate heterogeneity 

estimates (i.e., 30-60%).  
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The estimated degree of heterogeneity varied frequently between the DL and REML estimators 

when the DL estimator yielded estimates smaller than 60%, and especially when either of the 

two estimates was truncated to 0%. Absolute differences between the two were most frequently 

smaller than 50%. The chance of either of the two being larger than the other appears to be equal.  

 

The estimated degree of heterogeneity varied frequently and dramatically between the DL and 

HE estimators and between the DL and SJ estimators for any estimate of the DL estimator.  The 

DL estimator most frequently yielded smaller degrees of heterogeneity. Absolute differences up 

to 98% were observed between heterogeneity estimates from the DL estimator and either the HE 

or SJ estimator. Sensitivity analyses using ‘treatment arm’ continuity correction for handling 

zero-events and sensitivity analysis using odds ratio as the measure of effect yielded similar 

results in the graphical inspection of degrees of heterogeneity. 

 

Illustrative examples 

In this section we provide two illustrative examples excerpted from the 920 meta-analyses 

included in this study. These examples illustrate how inferences about comparative effects and 

heterogeneity between trials may differ across random-effects meta-analyses based on different 

estimators and different distributional assumptions about the pooled intervention effect (normal 

or t-distribution).  

 

Example 1 

A meta-analysis comparing cyclosporine with tacrolimus for preventing mortality in liver 

transplant patients from the systematic review ‘Cyclosporin versus tacrolimus for liver 
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transplanted patients’ yielded discrepancies in statistical significance across the five estimators, 

and some disagreement in the estimated degree of heterogeneity (Figure 3).
26

 This meta-analysis 

originally found tacrolimus to be superior compared with cyclosporin (RR=0.85, 95% CI 0.73-

0.99) with no heterogeneity, I
2
=DDL

2
=0%, between trials, and this finding played a dominating 

part in the conclusion of the systematic review.
26

 Normal distribution based random-effects 

meta-analyses based on the HM, REML and SJ estimators did not yield statistical significance. 

All t-distribution based random-effects models yielded statistical significance. The HM, REML 

and SJ estimators produced heterogeneity estimates larger than 0% Given the relatively low 

proportion of events across trials and the resulting wide trial result confidence intervals, small 

heterogeneity estimates are expected, but should not be interpreted as ignorable.
27

 The HM 

estimator yielded mild to moderate heterogeneity, DHM
2
=32.7%, whereas the REML and SJ 

estimators yielded mild heterogeneity estimates, DREML
2
=12.1% and DSJ

2
=13.3%. Inspection of 

the forest plot revealed some discrepancies among the larger trials. In particular, the studies by 

Muehlbacher et al. and O’Grady et al. seem discrepant.
26

 Considerable variation in point 

estimates from the smaller trials were also observed. In collection, this could suggest that some 

degree of heterogeneity exists – inferences which could have been picked up with the HM 

estimator, and perhaps with the REML and SJ estimators. In the systematic review, the 

heterogeneity was explored by subgroup analysis of trials using oil-based cyclosporin, trials 

including children, trials not reporting 12 months data, trials confined to patients with hepatitis 

C, and trials with different protocols for immunosuppression with azathioprine or mycophenolate 

mofetil. No statistical evidence for subgroup effects was found. However, many of the subgroups 

only contained trials with a small sample and number of events, and thus, the possibility that 

some heterogeneity exists should not be excluded. 
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Example 2 

Another meta-analysis that yielded discrepancies in statistical significance between the five 

estimators was the meta-analysis of corticosteroids for preventing death caused by tuberculosis 

meningitis from the systematic review ‘Corticosteroids for managing tuberculous meningitis’ 

(see Figure 4).
28

 This meta-analysis included 7 trials, which, except for age (children, adults or 

both) all included similar patients. The administered interventions in the trials were similar, but 

the length of follow-up differed from 2 months to 2 years. The direction of effect was in favour 

of corticosteroids and was consistent across trials, except for the Chotmongkol et al. trial, which 

had imbalance in prognostic factors favouring the control (possibly due to loss to follow-up).
28

 

The normal distribution based DL meta-analysis yielded a relative risk of 0.79 (95% CI 0.69-

0.92) and no sign of heterogeneity across trials, I
2
=DDL

2
=0%. The systematic review concluded 

that overall corticosteroids were effective in treating tuberculosis meningitis.
28

 Normal 

distribution based random-effects meta-analysis using the HE and SJ estimators and t-

distribution based random-effects meta-analyses using the HM, HE, and SJ estimators were not 

statistically significant. The HE and SJ estimators yielded very large heterogeneity estimates, 

DHE
2
=86.7% and DSJ

2
=82.1%, and the HM estimator yielded a moderate to large heterogeneity, 

DHM
2
=52.2%. Considering the consistency in effect estimates across trials, except for the 

Chotmongkol et al. trial, it seems more likely than not that corticosteroids are associated with 

prevention of death. The absence of statistical significance from the above mentioned random-

effects approaches may have inappropriately downplayed the authors confidence in the overall 

effectiveness, had either of these approaches been used. Inferences based on the HM estimator 

would likely still result in the conclusion of overall effectiveness, but trigger some exploration of 
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heterogeneity. In this vein, one might be inclined to perform a sensitivity analysis in which the 

Chotmongkol et al. trial was excluded. This sensitivity analysis would reveal statistical 

significance and small heterogeneity estimates with all estimators.  

 

Discussion 

Our results provide insight about the extent and frequency with which one can expect inferences 

from random-effects meta-analyses to vary with the choice of estimator employed to estimate the 

between-trial variance under the conventional normal distribution random-effects approach as 

well as the ‘weighted variance’ t-distribution approach. We explored such variations with 

reference to the DL estimator as this is the approach most commonly employed. We found that 

DL based statistical inferences about the comparative effectiveness are highly concordant with 

inferences based on the REML estimator. Under the normal distribution based random-effect 

approach, DL based statistical inferences about the comparative effectiveness were not 

infrequently discordant with statistical inferences based on the HM, HE and SJ estimators 

(roughly 5% to 10% of the included meta-analyses yielded discordant inferences). However, 

these inferential discordances were rarely sufficiently pronounced to impact the conclusions 

about the comparative treatment effect, and thus, of the systematic review conclusion. Under the 

t-distribution based random-effects approach, DL based statistical inferences were even less 

frequently discordant with statistical inferences based on any of the alternative estimators. DL 

based inferences about the degree of heterogeneity seem to be frequently discordant with 

inferences based on all four estimators. However, the types of discordances vary across 

estimators. The HM estimator seems predictably larger when the DL based estimates lie between 

0% and 60%. The REML estimator appears smaller or larger at random by an absolute difference 
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up to 30% when the DL based estimates lie between 0% and 60%. The HE and SJ based 

estimates are, on average, larger estimates than the DL based estimates. However, differences 

between each of the latter two and the DL based estimates are subject to great variation and are 

often large. 

 

Our two examples illustrate that the choice of between-trial variance estimator is not straight 

forward. In particular, they illustrate how one estimator may yield more plausible inferences for 

one meta-analysis data set, but less plausible inferences for another. In the face of this 

uncertainty, one could argue that borderline significance should not be interpreted as definitive 

evidence of effect – as would have been the case with example 1.  

 

Our study offers several strengths. It represents the first large-scale empirical study on this topic, 

and our sample comprised of primary outcome meta-analyses (i.e., those most likely to influence 

the inferences of the systematic review). Our measures of inferential concordance and 

discordance cover the most commonly employed measures for statistical inference in meta-

analyses (statistical significance, confidence intervals and the percentage of heterogeneity). In 

concert, these design features ensured high relevance to general meta-analysis and systematic 

review conduct. 

 

Our study may also have potential weaknesses and limitations. We did not examine meta-

analyses published in paper journals. As meta-analyses published in paper journals are more 

likely to present statistically significant findings and on average include more trials, one could 

speculate that our findings might have been different, had we included such meta-analyses.
29;30
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We only compared the DL estimator to four alternative between-trial variance estimators. There 

exist at least 10 additional proposals for between-trial variance estimators.
6-11;13-15;31

 Thus, had 

we included these estimators our results might have been different – at least under the normal 

distribution based random-effects approach. For simplicity, we decided to obtain the relative 

risks (and as sensitivity analysis, odds ratios) from the eligible 920 meta-analysis data sets. 

However, one could argue that we should have analysed each of the 920 meta-analyses with the 

effects measure reported in the publication. However, such analyses would complicate 

comparisons of confidence intervals and heterogeneity estimates. We also did not take into 

account whether the authors had used a fixed-effect or random-effects model meta-analysis. 

However, in Cochrane meta-analyses it is uncommon to see a fixed-effect meta-analysis 

accompanied by a large estimate of statistical heterogeneity. Thus, p-values and 95% confidence 

intervals in those of the 920 meta-analysis that did employ a fixed-effect model were most likely 

similar to that of the DL random-effects meta-analysis. Lastly, we did not examine if any of the 

review authors in fact took any precautions in their assessment of statistical significance from 

their DL random-effects model meta-analyses. However, being regular readers of The Cochrane 

Library reviews – as well as other meta-analyses in paper journals – we believe such precautions 

are likely to be rare or non-existent. 

 

The results from our empirical assessment are largely congruent with results from previous 

simulation studies. Under the normal distribution based random-effects model we observed the 

following about statistical inferences of the intervention effect. With the exception of a few 

cases, the comparative inferences for statistical significance and confidence intervals are highly 

similar for the DL and HM estimator. Considering the results from previous simulation studies, 
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this apparent similarity is, perhaps, a bit more pronounced than expected.
8;11

 Although the 

REML estimator has generally been shown to produce superior results to the DL estimator, the 

differences in simulation studies have not been pronounced.
6;8;10

 This was confirmed in our 

study. The HE and SJ estimators, on average, produce larger heterogeneity estimates.
8;10

 Thus, 

the smaller number of statistically significant results, the wider confidence intervals, and the 

generally larger estimates of the percentage of heterogeneity observed in our study are no 

surprise. Our results also confirm that these two estimators are subject to larger variability. This 

added variability appears to be present for all degrees of heterogeneity, and not just when the DL 

estimator is truncated to 0 as previously commented on by Sidik and Jonkman.
10

   

Under the t-distribution based random-effects model our results were also congruent with the 

findings from previous simulation studies. In particular, the inferences about the intervention 

effect are less affected by the choice of between-trial variance estimator under the t-distribution 

based random effects model.
8;11;15

  

 

It is important to gauge the implications of the observed discrepancies between the DL estimator 

and alternative estimators. With regards to inferences about the meta-analysed intervention 

effect, the largest numbers of discrepancies were observed for the HE and SJ under the normal 

distribution based random-effects approach. In total, we counted 30 and 16 meta-analyses where 

the resulting p-values were more than two categories apart in our post-hoc analysis of agreement 

on statistical significance, and we counted about 13 and 12 meta-analyses where confidence 

intervals from significant meta-analyses disagreed (according to our arbitrary threshold). In other 

words no more than 43 out of 920 sampled meta-analyses (i.e., approximately 5%) were 

evaluated as potentially problematic. Considering the possibility that other factors could play a 
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dominating role in shaping the conclusion of the systematic review, checking whether the choice 

of between-trial variance estimator is a cause of inappropriate inferences seems less important 

than checking for presence of various types of bias and inadequacy of precision (i.e., insufficient 

number of patients and events) as causes of inappropriate inferences. One could argue that the 

only scenario where disclosing sensitivity to the choice of between-trial variance estimator, 

might be the scenario where the DL random-effects model is borderline significant and the fact 

that statistical significance was reached was an important determinant for the overall conclusion 

about comparative effectiveness.  

It is also important to gauge the implications of the discrepancies between the observed degrees 

of heterogeneity. Many studies have demonstrated through simulation that the DL estimator, on 

average, underestimates heterogeneity. Consequently I
2
 (and DDL

2
) will also be underestimates, 

on average. In many of the 920 meta-analyses, the DDL
2
 estimate was 0% when the other 

estimators yielded >0% degrees of heterogeneity. Inspection of Figure 2 could suggest that DHM
2
 

provides a viable alternative to estimating the percentage of heterogeneity in a meta-analysis 

since this measure does not suffer from the sup-optimal truncation (to zero) property and is not 

subject to large variability. In contrast, DHE
2
 and DSJ

2
, although less downwardly biased, on 

average, are subject to large degrees of variability, and thus, presumably less reliable (this is also 

illustrated in example 2). Further, DREML
2
 shares the sub-optimal truncation property with DDL

2
, 

and does not seem to produce notably different results.  

One could speculate that implementation of, for example, DHM
2
 in meta-analysis software 

packages and eventually standard meta-analytic practice, would result in systematic review 

conclusions that put more emphasis on heterogeneity. Because clinical studies are largely 

designed and funded in accordance with the identified gaps in the current evidence and such gaps 
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are frequently identified through systematic reviews, it is likely that more phase IV trials and 

complex phase III trials would emerge.  

 

In summary, the estimated degree (percentage) of heterogeneity is highly sensitive to the choice 

of between-trial variance estimator. Inferences about the overall treatment effect, however, are 

only infrequently influenced by the choice of between-trial variance estimator. It is our hope that 

future meta-analysis software packages will incorporate measures of the degree of heterogeneity 

(D
2
) based on alternative between-trial variance estimators to allow for appropriate 

quantification of heterogeneity. Future meta-analysis software packages should also incorporate 

the random-effects models based on the alternative between-trial variance estimators so that 

sensitivity analyses on their impact on the overall treatment effect may be carried out if 

necessary.  
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Table 1 Number and percentage of normal distribution based random-effects meta-

analyses where the DerSimonian-Laird (DL) estimator compared to the Hartung-

Makambi (HM), restricted maximum-likelihood (REML), Hedges (HE), and Sidik-

Jonkman (SJ) estimators yielded the same or opposite inference with regard to 

statistical significance. 

 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant 

(n=506) 

Significant 

(n=414) 

Kappa 

(95%CI) 

HM random-effects meta-analyses*  

  Non-significant 504 (99.6%) 28 (7.3%) 0.93 (0.91-

0.96)   Significant 2 (0.4%) 386 (99%) 

REML random-effects meta-analyses*  

  Non-significant 497 (98.2%) 4 (1%) 0.97 (0.96-

0.99)   Significant 9 (1.8%) 410 (99%) 

HE random-effects meta-analyses*  

  Non-significant 491 (97.0%) 48 (11.6%) 0.86 (0.83-

0.89)   Significant 15 (3.0%) 366 (89.3%) 

SJ random-effects meta-analyses*   

  Non-significant 499 (98.6%) 47 (11.4%) 0.88 (0.85-

0.91)   Significant 7 (1.4%) 367 (79.5%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-

analysis strata. Constant continuity correction was used for handling all zero-event 

arms. 

CI: Confidence interval 
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Table 2 Number of meta-analyses where p-values from the normal distribution based 

DerSimonian-Laird (DL) random-effect model compared to the normal distribution based 

Hartung-Makambi (HM), restricted maximum-likelihood (REML), Hedges (HE), and Sidik-

Jonkman (SJ) random-effects model fell within or outside the post-hoc defined categories for 

the strength of statistical significance. 

  

DerSimonian-Laird p-value* 

 

Kappa 

(95%CI) p>0.10 0.10≥p>0.05 0.05≥p>0.01 p<0.01 

 

Hartung-Makambi p-value* 

p>0.10 449 18 4 0 

0.87 (0.85-

0.91) 

0.10≥p>0.05 3 34 23 1 

0.05≥p>0.01 1 1 97 16 

p<0.01 0 0 4 269 

 

Restricted maximum likelihood p-value* 

p>0.10 443 8 0 0 

0.92 (0.90-

0.94) 

0.10≥p>0.05 6 40 4 0 

0.05≥p>0.01 3 4 113 5 

p<0.01 1 1 11 281 

 

Hedges p-value* 

p>0.10 445 12 12 8 

0.80 (0.77-

0.83) 

0.10≥p>0.05 4 30 26 2 

0.05≥p>0.01 2 7 76 23 

p<0.01 2 4 14 253 

 

Sidik-Jonkman p-value* 

p>0.10 448 15 7 5 

0.81 (0.78-

0.85) 

0.10≥p>0.05 4 32 33 2 

0.05≥p>0.01 1 5 80 28 

p<0.01 0 1 8 251 

 

*Relative risk was the effect measure. ‘Constant’ continuity correction was used for 

handling all zero-event arms.  

CI: Confidence interval 
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Table 3 Number and percentage of t-distribution random-effects meta-analyses where 

the DerSimonian-Laird (DL) estimator compared to the Hartung-Makambi (HM), 

restricted maximum-likelihood (REML), Hedges (HE), and Sidik-Jonkman (SJ) 

estimators yielded the same or opposite inference with regard to statistical 

significance. 

 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant 

(n=594) 

Significant 

(n=326) 

Kappa 

(95%CI) 

HM random-effects meta-analyses*  

  Non-significant 588 (99.0%) 13 (4.0%) 0.96 (0.93-

0.98)   Significant 6 (1.0%) 313 (96.0%) 

REML random-effects meta-analyses*  

  Non-significant 585 (98.5%) 2 (0.6%) 0.97 (0.96-

0.99)   Significant 9 (1.5%) 324 (99.4%) 

HE random-effects meta-analyses*  

  Non-significant 589 (99.2%) 16 (4.9%) 0.95 (0.93-

0.97)   Significant 5 (0.8%) 310 (95.1%) 

SJ random-effects meta-analyses*   

  Non-significant 590 (99.3%) 20 (6.1%) 0.94 (0.92-

0.97)   Significant 4 (0.7%) 306 (93.9%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-

analysis strata. Constant continuity correction was used for handling all zero-event 

arms. 

CI: Confidence interval 
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Table 4 Number of meta-analyses where p-values from the t-distribution based DerSimonian-

Laird (DL) random-effect model compared to the t-distribution based Hartung-Makambi 

(HM), restricted maximum-likelihood (REML), Hedges (HE), and Sidik-Jonkman (SJ) 

random-effects model fell within or outside the post-hoc defined categories for the strength of 

statistical significance under robust confidence intervals. 

  

DerSimonian-Laird p-value* 

 

Kappa 

(95%CI) p>0.10 0.10≥p>0.05 0.05≥p>0.01 p<0.01 

 

Hartung-Makambi p-value* 

p>0.10 493 14 1 0 

0.92 (0.90-

0.94) 

0.10≥p>0.05 4 77 12 0 

0.05≥p>0.01 3 3 137 9 

p<0.01 0 0 1 166 

 

Restricted maximum likelihood p-value* 

p>0.10 491 1 0 0 

0.96 (0.95-

0.98) 

0.10≥p>0.05 4 89 2 0 

0.05≥p>0.01 5 4 145 2 

p<0.01 0 0 4 173 

 

Hedges p-value* 

p>0.10 488 14 8 1 

0.90 (0.87-

0.93) 

0.10≥p>0.05 10 77 7 0 

0.05≥p>0.01 1 3 134 9 

p<0.01 1 0 2 165 

 

Sidik-Jonkman p-value* 

p>0.10 489 15 6 1 

0.91 (0.89-

0.93) 

0.10≥p>0.05 11 75 13 0 

0.05≥p>0.01 0 4 132 9 

p<0.01 0 0 0 251 

 

*Relative risk was the effect measure. ‘Constant’ continuity correction was used for 

handling all zero-event arms.  

CI: Confidence interval 
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Figure 1. Plots of normal distribution based confidence interval (CI) limits closest to 1 (on the relative 

risk (RR) scale) from (A) the 410 meta-analysis where both the DerSimonian-Laird (DL) and Hartung-

Makimbi (HM) random-effects models yielded statistical significance; (B) the 410 meta-analysis where 

both the DL and restricted maximum-likelihood (REML) random-effects models yielded statistical 

significance; (C) the 362 meta-analysis where both the DL and Hedges (HE) random-effects model 

yielded statistical significance; (D) the 329 meta-analysis where both the DL and Sidik-Jonkman (SJ) 

random-effects models yielded statistical significance.  In all plots the CI limits from the DL random-

effects model are plotted on the x-axis and the CI limits from the HM, REML, HE, and SJ random-effects 

model are plotted on the y-axis. Values smaller than 1.00 correspond to CI upper limits from meta-

analyses where the pooled RRs are smaller than 1.00. Values larger than 1.00 correspond to CI lower 

limits from meta-analyses where the pooled RRs are larger than 1.00. 
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Figure 2. Plots of degree of heterogeneity under the DerSimonian-Laird random-effects model (x-axis) 

versus (A) the degree of heterogeneity under the Hartung-Makimbi (HM) random-effects models; (B) the 

degree of heterogeneity under the restricted maximum-likelihood (REML) random-effects models; (C) 

the degree of heterogeneity under the Hedges (HE) random-effects models; (D) the degree of 

heterogeneity under the Sidik-Jonkman (SJ) random-effects models. 
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Table A.1 Sensitivity analysis (see * below): Number and percentage of meta-analyses 

where the DerSimonian-Laird (DL) estimator compared to the Hartung-Makambi (HM), 

restricted maximum-likelihood (REML),Hedges (HE), and Sidik-Jonkman (SJ) estimators 

yielded the same or opposite inference with regard to statistical significance. 

 

 

Alternative  estimator 

DL random-effects meta-analyses*  Kappa 

Estimate 

(95%CI) 

Not significant 

(n=511) 

Significant 

(n=409) 

HM random-effects meta-analyses  

  Not significant 510 (99.9%) 36 (8.8%) 
0.92 (0.89-0.94) 

  Significant 1 (0.1%) 373 (91.2%) 

REML random-effects meta-analyses  

  Not significant 504 (98.6%) 8 (2%) 
0.97 (0.95-0.98) 

  Significant 7 (1.4%) 401 (98%) 

HE random-effects meta-analyses  

  Not significant 488 (95.4%) 37 (9.0%) 
0.87 (0.84-0.90) 

  Significant 23 (4.5%) 372 (91.0%) 

SJ random-effects meta-analyses   

  Not significant 499 (97.7%) 42 (10.3%) 
0.88 (0.85-0.91) 

  Significant 12 (2.3%) 367 (89.7%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ 

meta-analysis strata. ‘Treatment arm’ continuity correction was used for 

handling all zero-event arms.  

CI: Confidence interval 
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Table A.2 Sensitivity analysis (see * below): Number and percentage of meta-analyses 

where the DerSimonian-Laird (DL) estimator compared to the Hartung-Makambi (HM), 

restricted maximum-likelihood (REML),Hedges (HE), and Sidik-Jonkman (SJ) estimators 

yielded the same or opposite inference with regard to statistical significance. 

 

 

Alternative  estimator 

DL random-effects meta-analyses*   

Kappa Estimate 

(95%CI) 

Not significant 

(n=498) 

Significant 

(n=422) 

HM random-effects meta-analyses*  

  Not significant 492 (98.8%) 23 (5.5%) 
0.94 (0.91-0.96) 

  Significant 6 (1.2%) 399 (94.5%) 

REML random-effects meta-analyses*  

  Not significant 485 (97.4%) 6 (1.4%) 
0.96 (0.94-0.98) 

  Significant 13 (2.6%) 416 (98.6%) 

HE random-effects meta-analyses*  

  Not significant 487 (97.8%) 36 (8.5%) 
0.90 (0.87-0.93) 

  Significant 11 (2.2%) 386 (91.5%) 

SJ random-effects meta-analyses*   

  Not significant 490 (98.4%) 32 (7.6%) 
0.91 (0.89-0.94) 

  Significant 8 (1.6%) 390 (92.4%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-analysis 

strata. Odds ratio was the effect measure. ‘Constant’ continuity correction was used for 

handling all zero-event arms.  

CI: Confidence interval 
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Table A.3 Subgroup analysis by achieved levels of information size. Number and percentage of 

meta-analyses where the DerSimonian-Laird (DL) estimator compared to the Hartung-Makambi 

(HM) estimator yielded the same or opposite inference with regard to statistical significance. 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant  Significant   Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 306 (99.4%) 18 (9.4%) 
0.91 (0.88-0.95) 

  Significant 2 (0.6%) 174 (90.6%) 

Between 50% and 100% of OIS achieved  

  Non-significant 79 (100%) 3 (3.8%) 
0.96 (0.92-1.00) 

  Significant 0 (0%) 75 (96.2%) 

OIS surpassed   

  Non-significant 119 (100%) 7 (4.9%) 
0.95 (0.91-0.99) 

  Significant 0 (0%) 137 (96.2%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-

analysis strata. Constant continuity correction was used for handling all zero-event 

arms. 

CI: Confidence interval 
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Table A.4 Subgroup analyses by achieved levels of information size. Number and percentage of 

meta-analyses where the DerSimonian-Laird (DL) estimator compared to the restricted maximum 

likelihood (REML) estimator yielded the same or opposite inference with regard to statistical 

significance. 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant  Significant   Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 305 (99.0%) 0 (0%) 
0.99 (0.97-1.00) 

  Significant 3 (1.0%) 192 (100%) 

Between 50% and 100% of OIS achieved  

  Non-significant 79 (100%) 1 (1.3%) 
0.99 (0.96-1.00) 

  Significant 0 (0%) 77 (98.7%) 

OIS surpassed   

  Non-significant 113 (95.0%) 3 (2.1%) 
0.93 (0.89-0.98) 

  Significant 6 (5.0%) 141 (97.9%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-

analysis strata. Constant continuity correction was used for handling all zero-event 

arms. 

CI: Confidence interval 
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Table A.5 Subgroup analyses by achieved levels of information size. Number and 

percentage of meta-analyses where the DerSimonian-Laird (DL) estimator compared 

to the Hedges (HE) estimator yielded the same or opposite inference with regard to 

statistical significance. 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant  Significant    Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 300 (97.4%) 20 (10.4%) 
0.88 (0.84-0.92) 

  Significant 8 (2.6%) 172 (89.6%) 

Between 50% and 100% of OIS achieved  

  Non-significant 78 (98.7%) 10 (12.8%) 
0.86 (0.78-0.94) 

  Significant 1 (1.3%) 68 (87.2%) 

OIS surpassed   

  Non-significant 113 (95.0%) 18 (12.5%) 
0.82 (0.75-0.89) 

  Significant 6 (5.0%) 126 (87.5%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-

analysis strata. Constant continuity correction was used for handling all zero-event 

arms. 

CI: Confidence interval 
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Table A.6 Subgroup analysis by achieved levels of information size. Number and 

percentage of meta-analyses where the DerSimonian-Laird (DL) estimator compared 

to the Sidik-Jonkman (SJ) estimator yielded the same or opposite inference with regard 

to statistical significance. 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant  Significant   Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 308 (98.4%) 20 (10.4%) 
0.89 (0.85-0.93) 

  Significant 5 (1.6%) 172 (89.6%) 

Between 50% and 100% of OIS achieved  

  Non-significant 79 (100%) 9 (11.5%) 
0.89 (0.81-0.96) 

  Significant 0 (0%) 69 (88.5%) 

OIS surpassed   

  Non-significant 117 (98.3%) 18 (12.5%) 
0.85 (0.79-0.91) 

  Significant 2 (1.7%) 126 (87.5%) 

 

*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-

analysis strata. Constant continuity correction was used for handling all zero-event 

arms. 

CI: Confidence interval 
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Figure A.1. Plots of t-distribution based confidence interval (CI) limits closest to 1 (on the relative risk 

(RR) scale) from (A) the 313 meta-analysis where both the DerSimonian-Laird (DL) and Hartung-

Makimbi (HM) random-effects models yielded statistical significance; (B) the 324 meta-analysis where 

both the DL and restricted maximum-likelihood (REML) random-effects models yielded statistical 

significance; (C) the 310 meta-analysis where both the DL and Hedges (HE) random-effects model 

yielded statistical significance; (D) the 306 meta-analysis where both the DL and Sidik-Jonkman (SJ) 

random-effects models yielded statistical significance.  In all plots the CI limits from the DL random-

effects model are plotted on the x-axis and the CI limits from the HM, REML, HE, and SJ random-effects 

model are plotted on the y-axis. Values smaller than 1.00 correspond to CI upper limits from meta-

analyses where the pooled RRs are smaller than 1.00. Values larger than 1.00 correspond to CI lower 

limits from meta-analyses where the pooled RRs are larger than 1.00. 
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Summary 

Background: Meta-analyses of continuous data present difficulties in interpretation when 

studies use different instruments to measure the same construct. Presentation of results in 

standard deviation units (standardized mean difference, SMD) is widely used, but is limited by 

vulnerability to differential variability in populations enrolled, and interpretational challenges.     

Objectives: To identify and describe the available approaches for enhancing interpretability of 

meta-analyses involving continuous outcomes.  

Findings: We identified 12 approaches in three categories:  

1) Summary estimates derived from the pooled SMD: conversion to units of the most familiar 

instrument, or conversion to risk difference or odds ratio. These approaches remain vulnerable to 

differential variability in populations.  

2) Summary estimates derived from the individual trial summary statistics: conversion to units of 

the most familiar instrument or to ratio of means. Both are appropriate complementary 

approaches to measures derived from converted probabilities. 

3) Summary estimates derived from the individual trial summary statistics and established 

minimally important differences (MIDs) for all instruments: presentation in MID units or 

conversion to risk difference or odds ratio. Risk differences are ideal for balancing desirable and 

undesirable consequences of alternative interventions.  

Conclusion: Use of these approaches may enhance the interpretability and the usefulness of 

systematic reviews involving continuous outcomes. 
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Introduction 

Meta-analyses of clinical trials typically provide enough information for decision makers (e.g. 

clinicians, policy makers) to evaluate the extent to which chance can explain apparent 

differences between interventions with respect to patient important outcomes.  The interpretation 

of the magnitude and importance of treatment effects can, however, be challenging.  When 

outcomes are continuous rather than dichotomous, challenges in interpretation occur as a result 

of two problems.   First, trials often use different instruments to measure the same or similar 

constructs.  For instance, there are at least five commonly used instruments available for 

measuring depression (the Beck Depression Inventory-II, Hamilton Rating Scale for Depression, 

Montgomery-Asberg Depression Rating Scale, Patient Health Questionnaire-9, Quick Inventory 

of Depressive Symptomatology.
1-5

 Second, even if trials have used the same instrument, decision 

makers may have difficulty understanding the importance of the apparent magnitude of effect. 

For instance, without further information, clinicians would have difficulty grasping the 

importance of a 1 point difference between intervention and control in the Chronic Respiratory 

Questionnaire, or a 5 point difference in the SF-36.
6
 

 

When clinical trials measure continuous outcomes involving the same or similar constructs using 

different instruments (e.g., depression using the Beck Depression Inventory-II and the Hamilton 

Rating Scale for Depression), typically review authors combine data using the standardized 

mean difference (SMD).  This involves dividing the difference between the intervention and 

control means in each trial (i.e., the mean difference) by the estimated within-group standard 

deviation (SD) for that trial.
7;8

 The SMD, however, has limitations. First, the SMD is measured  

in standard deviation units to which clinicians may not be able to easily relate.
9
 Second, if the 
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variability or heterogeneity in the severity of patients' condition (and thus the variability in 

scores on the chosen outcome) varies between trials, their standard deviations will also vary. As 

a result, trials that enroll a heterogeneous group of patients will yield smaller SMDs than trials 

enrolling less heterogeneous patients, even though the unstandardized mean difference estimates 

- and thus the absolute estimate of the magnitude of treatment effect - may be similar across all 

trials.
10-12

  

 

Many authors have proposed alternatives to the SMD that produce summary estimates that may 

be more easily interpreted by clinicians, some of which rely on standard deviations being similar 

across trials, and some of which do  not.
12-16

 Thus far, alternatives to the SMD have seen limited 

use, few studies have compared the SMD approach to the available alternatives, and a broad 

summary of alternative approaches, with a perspective regarding their relative merits, is 

unavailable.
11-14

 In this article, we provide a comprehensive overview of the various methods for 

reporting meta-analytic summary estimates from continuous data, including their strengths and 

limitations. Most of the methods were originally proposed for improving interpretability of 

effects of individual trials, but can be readily applied to meta-analyses. 

 

We provide a comprehensive review of 12 approaches to reporting continuous outcomes that we 

have grouped into three categories. The first category of approaches derive a summary estimate 

from the estimated meta-analysis SMD and its associated 95% confidence interval (CI). The 

second category of approaches first derives summary estimates for the individual trials using 

group means, standard deviations and sample sizes, and subsequently pools these estimates in a 

meta-analysis. The approaches in the third category, in addition to first deriving summary 
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estimates for the individual trials from group means, also depend on an established minimally 

important difference (MID) for the instruments employed in the relevant trials. We apply all 

these methods to two meta-analysis data sets: one investigating the effect of interventions for 

respiratory rehabilitation in chronic obstructive pulmonary disease (COPD),
17

 one comparing 

pain in patients undergoing laparoscopic cholecystectomy receiving dexamethasone or placebo,
18

 

and one comparing paroxetine versus placebo for the treatment of major depression in adults.
19

 

  

Methods 

In this section we first define some statistical notation and describe the inverse variance method 

that we use throughout our analyses to pool trial results. Because many of the approaches rely on 

conversion from an available mean difference estimate (or SMD) to probabilities (i.e., control 

and intervention group probabilities), we then establish a general methodological framework for 

such conversions. After presenting these general principles, we describe the identified methods 

ordered by category. Table 1 summarizes the strengths and limitations for each method and 

category. 

 

Statistical notation 

Let XCi~N(µCi, σCi
2
) and XEi~N(µEi, σEi

2
) be normally distributed random variables for the 

responses in the control and intervention groups in trial i, where µCi and µEi are the true mean 

responses in the control and intervention groups in trial i, and σCi
2
 and σEi

2
 are the true group 

variances. Correspondingly let mCi and mEi denote the estimated mean responses, sdCi and sdEi 

denote the estimated standard deviations of  mCi and mEi, and let nCi and nEi denote the number of 
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patients in the trial groups. For trial i, the mean difference (MD) and its associated standard error 

is given by
11

  

i Ci EiMD m m= −
  

2 2

( ) Ci Ei
i

Ci Ei

sd sd
SE MD

n n
= +    

 

Pooling of results using the inverse variance method 

The pooled fixed-effect model summary estimate in a meta-analysis is typically obtained by 

taking a weighted average of the individual trial summary estimates.  The most common type of 

weighted average is the inverse variance meta-analysis that assigns weights to individual trials 

according to the inverse of the variances for their summary estimates. In particular, let ˆ
iθ denote 

the summary estimate of trial i and let 
2ˆ ˆ( )i iVar θ σ=

 
denote its variance (i.e., the within-trial 

variance). With the inverse variance method, trial i is then assigned the weight 21/i iw σ=
 
and the 

pooled summary estimate is derived via the formula 

1

1

ˆ

ˆ

k

i i

i

k

i

i

w

w

θ
θ =

=

⋅
=
∑

∑
     

 

where k is the number of trials in the meta-analysis. The standard error of the pooled estimate, θ̂ , 

is calculated as 
1

ˆ( ) 1/
k

i

i

SE wθ
=

= ∑ . Confidence intervals (CI) for the pooled summary estimate 

are typically calculated by assuming normality forθ̂ . For example, the 95% CI is calculated as  

( )ˆ ˆ1.96 SEθ θ± ⋅ . 
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Similarly, the inverse variance method can be applied to pool results across trials under the 

random-effects model. The variance of each trial summary estimate, ˆ
iθ , under the random-

effects model is given as the sum of the within-trial variance, 2

iσ  and the between-trial variance, 

2

iτ  
. That is,  

2 2ˆ ˆ ˆ( )i i iVar θ σ τ= + . Using the inverse variance methods the weights under the 

random-model are then given by ( ) 1
* 2 2ˆ ˆ
i i iw σ τ

−
= + . The pooled estimate is calculated as  

*

1

*

1

ˆ

ˆ

k

i i

i

k

i

i

w

w

θ
θ =

=

⋅
=
∑

∑
 

The standard error of the pooled estimate is given by
*

1

ˆ( ) 1/
k

i

i

SE wθ
=

= ∑ , and the 95% CIs are, 

again, given by ( )ˆ ˆ1.96 SEθ θ± ⋅ . Further details of the conventional approach to random-effects 

meta-analysis are given by DerSimonian and Laird.
20

 

 

Conversion of individual trial continuous data to probabilities (or risks) 

Many of the methods we identified (see table 1) are based on conversion of individual trial 

results or the meta-analysis summary estimates into probabilities (or risks) of observing a 

response greater than or equal to some threshold. We first outline the general methodology for 

obtaining such probabilities for individual trials. In the next section we outline how these 

probabilities can be obtained when only the meta-analysis summary estimate is available. Note, 

in this paper we generally deal with situations where observing a response greater than or equal 

to some threshold indicates benefit, and we therefore use the word probabilities rather than risks.  
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Let XCi and XEi be normally distributed random variables for the control and intervention group 

mean responses in trial i, as defined above. For each trial, i, one can obtain the probabilities of 

observing a response greater than or equal to some threshold, T, in each group. For example, in 

trials investigating interventions for major depression, one can obtain the probability of 

observing a 7 point improvement from baseline or greater on the Hamilton Rating Scale for 

Depression. We denote the probabilities of observing a response greater than or equal to some 

threshold, pCi=Pr(XCi≥T) and pEi=Pr(XEi≥T). From standard normal theory these probabilities are 

given by  

1 Ci
Ci

Ci

T
p

µ
σ

 −
= −Φ 

   

1 Ei
Ei

Ei

T
p

µ
σ

 −
= −Φ 

     (1)   
 

 

where Φ is the standard normal cumulative distribution function.  

 

Category 1: Summary estimation based on the standardized mean difference 

The standardized mean difference (SMD) 

The standardized mean difference (SMD) is the mean difference reported in standard deviation 

units.
7;8

 It is calculated by dividing the mean difference, MD, by an appropriate standard 

deviation (e.g., the standard deviation of the control responses or the ‘average’ standard 

deviation of the control and intervention group responses). In meta-analysis, the pooled 

standardized mean difference is obtained by pooling individual trial standardized mean 

differences using the inverse variance method. That is, to calculate a pooled SMD we first 

calculate the individual trial SMDs and their associated standard errors and subsequently pool 

these using the inverse variance method.
11

 Throughout this article we use standard deviations 
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corresponding to the weighted average of the variances of the mean responses in the two groups 

to standardize the individual trial mean differences. We also use the small sample adjustment for 

the SMD and its associated standard error. Both are incorporated in the Cochrane Collaboration’s 

Review Manager software, and thus, commonly applied in practice.
11;21

  The standard deviations 

corresponding to the weighted average of the variances of the mean responses in the two groups 

is calculated as
8
 

2 2( 1) ( 1)
( )

2

Ci Ci Ei Ei
i

i

n sd n sd
SD MD

N

− + −
=

−
 

  (2)
 

 

 

where Ni = nCi + nEi. The small sample adjusted SMD and its associated standard error are 

calculated as
8
 

                  

3
1

( ) 4 9

i
i

i i

MD
SMD

SD MD N

 
= − − 

             
( )

2

( )
2 3.94

i i
i

Ci Ei i

N SMD
SE SMD

n n N
= +

−
 

 

 

All subsequent category 1 approaches rely on the pooled SMD.  That is, they do make estimates 

from the individual trials and use these estimates to derive a pooled estimate, but then they make 

a direct conversion of the pooled SMD. 

 

i) Conversion to natural units of most familiar instrument 

One approach for improving interpretability is the conversion of a pooled SMD to a pooled mean 

difference in the instrument with which the target audience is most familiar. For instance, we 

have previously mentioned five different instruments for measuring depression.  If all five had 

been used in different trials, one could generate an SMD and then convert to, for instance, units 

of the Beck Depression Scale. This conversion necessitates knowledge of the SD(MD) of the 
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instrument to which the author wishes to convert the SMD. For the remainder of this paper, we 

define the units on the most familiar instrument as natural units. Conversion of SMD to natural 

units is attained by using the formula 

                MD=SMD*SD(MD)     (3) 

 

Confidence limits are obtained by scaling the confidence intervals of the SMD by SD(MD) (as in 

equation (3)). The standard deviation associated with the MD of the target instrument may be 

obtained in a number of ways. Using the available meta-analysis data, one could use the median, 

or a weighted or an unweighted average of the trial standard deviations (e.g., weight by trial 

sample size). One may also wish to use standard deviation estimates from external sources of 

evidence such as large population cohort studies. We identified two meta-analyses that have used 

the conversion to natural units approach.
22;23

 

 

ii-a) Conversion to probabilities and risk difference (RD) or number needed to treat (NNT) 

Risk difference (RD) and its inverse, the number needed to treat (NNT), are measures that are 

highly useful for trading off desirable and undesirable outcomes associated with an 

intervention.
24-26

 To estimate the RD we must have estimates of the control and intervention 

group probabilities (of observing a response greater than some threshold). It is possible to obtain 

these probabilities from the summary SMD. The method relies on representing the meta-analysis 

results with conceptual projections of summary means and standard deviations for two meta-

analysis intervention groups.
13

 In the continuous meta-analysis setting in which all trials use the 

same instrument, we can represent the meta-analysis finding, the summary MD, with a 

conceptual meta-analysis control group with mean µC, standard deviation σC, and group size nC, 
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and a conceptual meta-analysis intervention group with mean µE, standard deviation σE, and 

group size nC.  Thus, MD = µE - µC and SD(MD) are appropriately derived from σC, σE, nC and 

nE (see equation (1)). The mean responses in both groups are assumed to follow a normal 

distribution.  

 

When trials in a continuous data meta-analysis use different instruments and we choose to 

represent the meta-analysis finding as a summary SMD, we would construct our conceptual 

meta-analysis control and intervention groups so that SMD = µE - µC and σE = σC = 1. Further, 

since conversion of the conceptual groups into probabilities is invariant to translation of the 

group means as long as the threshold, T, is translated accordingly (see equation (2)), we can set 

µC = 0 for convenience. When working with standard deviation units, the threshold, T, can be 

specified indirectly in terms of some assumed conceptual control group probability, pC. With µC 

= 0 and σC = 1, we have T=Φ-1
(pC), where Φ-1

 is the inverse standard normal cumulative 

distribution function. We can then use the derived threshold to derive the conceptual intervention 

group probability. The intervention group mean response is assumed to follow a normal 

distribution with mean SMD and a standard deviation of 1. Thus the intervention group 

probability is ( )1Ep T SMD= −Φ − . Having estimated the conceptual meta-analysis control and 

intervention group probabilities from the pooled SMD one can derive a RD estimate using the 

formula
15
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E CRD p p= −
        

(4)

  

The NNT can also be estimated from the conceptual meta-analysis control and intervention 

group probabilities derived from the pooled SMD 

 

1 1

E C

NNT
RD p p

= =
−

    

(5)

 

 

Note, both the RD and the NNT are derived directly from the pooled SMD. Confidence intervals 

for RD and NNT are obtained by applying the above conversion to the previously calculated 

confidence limits for the SMD. We identified one paper in which this method had been used to 

analyze meta-analysis data (i.e., obtain an NNT estimate).
27

 

 

Although it is widely appreciated for binary data that the RD and NNT can vary considerably 

with the control group probability,
28

 it should be noted the RD and NNT derived from the pooled 

SMD are very similar when the meta-analysis control probabilities s are specified as between 

20% and 80%.
9
  

 

ii-b) Conversion to probabilities and relative risk (RR) or odds ratio (OR) 

Having specified the control group probability and calculated the  intervention group probability 

using conversion from the pooled SMD (see ii-a), one can derive a relative risk or an odds ratio 

using the conventional formula
13;29

 

E

C

p
RR

p
=

      (6)
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(1 )

(1 )

E C

C E

p p
OR

p p

−
=

−      (7)
 

 

Confidence intervals for RD and NNT are obtained by applying the above conversion to the 

previously calculated confidence limits for the SMD. 

 

A simulation study demonstrated that OR estimates based on probabilities derived from the SMD 

may be unstable when the ‘true’ control group probability, pC, is smaller than 20% or larger than 

80%.
13

, and  particularly unstable when pC<10% or pC>90%.
13

 The same study also found that 

this method is only preferred  for converting SMD to OR (see method iii-a and iii-b below) in 

situations when the SMD is small and the number of trials is large.
13

 Lastly, the study found that 

this method does not perform well when underlying distribution is skewed.
13

 No simulation 

studies have explored the performance of RR derived from the pooled SMD. We identified one 

paper in which this method had been used to analyze meta-analysis data.
30

 

 

In the discussion we elaborate on how to choose reasonable meta-analysis control group 

probabilities when using approaches ii-a and ii-b. 

 

iii-a) Conversion directly to odds ratio (OR) 

One approach that does not rely on converting the SMD to probabilities was originally proposed 

by Hasselblad and Hedges.
13;16

 Their method exploits the fact that the logistic distribution and 

the standard normal distribution differ little except in the tails. The standard logistic distribution 

has variance π
2
/3 (i.e., standard deviation π/√3). Therefore, a difference on the log odds scale can 
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be converted to an approximate difference on the standardized mean difference scale by dividing 

the difference in log odds by π/√3≈1.81. Similarly, an SMD can be converted to a difference in 

log odds, and thus an odds ratio 

ln OR ≈ - 1.81⋅ SMD 

or 

OR ≈ e
-1.81⋅SMD

      

 

where ln is the natural logarithm. The above method assumes that the SMD is normally 

distributed, that the standardized group means are normally distributed with equal variances (i.e., 

σE = σC = 1), that the data follows a standard logistic distribution, and that the pC and pE from 

which ln(OR) was calculated were derived using any arbitrary threshold, T, (see description of 

approaches ii-a and ii-b). Thus, this method does not depend on nor necessitate an assumption of 

a single underlying conceptual meta-analysis control group probability. Under the above 

assumptions, the resulting OR from this method is invariant to the threshold used to dichotomize 

the data.
31

 A comprehensive simulation study demonstrated that the direct conversion from SMD 

to OR typically does not perform well when the assumption of equal variances is violated or 

when data are skewed.
13

 Further - as it is for method ii - the OR estimate becomes unstable when 

the ‘true’ control group probability is smaller than 20% or larger than 80% and in some scenarios 

(e.g., pC =5%) large biases can occur.
13

 In other words, the resulting OR is only approximately 

invariant to the choice of threshold in meta-analysis scenarios in which the assumption of equal 

variances hold true, the data have a logistic distribution or (approximately) a normal distribution, 

and the threshold corresponds to a control group probability between 20% and 80%. 
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iii-b) Conversion directly to OR 

Another approach for converting the SMD directly to an odds ratio recognizes that the 

relationship between the response probabilities for the standard logistic distribution and the 

cumulative probabilities for the standard normal distribution is not linear.
13;32

 As noted above, 

the shapes of the two distributions differ most in the extreme tails, but are approximately equal 

elsewhere. Cox and Snell proposed an approximation based on the part of the standard logistic 

distribution between p=0.20 and p=0.80. On a plot displaying the logistic and normal 

distributions, Cox and Snell estimated the slope of the straight line connecting these two points 

and found the approximate relationship 

   

ln OR ≈ -1.65⋅ SMD 

or 

OR ≈  e
-1.65⋅SMD   

 

 

This relationship holds approximately whenever the mean responses in the control and 

intervention approximately follow a normal distribution, and after standardization (to SD units), 

have equal variances.  Similar to method iii-a, the OR estimate becomes unstable when the ‘true’ 

control group probability is smaller than 20% or larger than 80%.
13

  Cox and Snell chose 20% 

and 80% because the response probabilities for the logistic distribution and the cumulative 

probabilities for the normal distribution are approximately linear on the logit scale between these 

points.
32

 Beyond these points these relationships are much less linear and the above two 

equations are therefore inaccurate.
13;32

 As for method iii-a, the OR estimate may also not perform 

well when the assumption of equal variances is violated or the data is skewed.
13
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Under circumstances in which estimation with approach iii-a is statistically biased (i.e., estimator 

bias) and where a positive SMD indicates the experimental intervention is superior, the approach 

is generally upwardly biased if pC ≤ 20% or pC ≥ 80%, but downwardly biased if pC lies between 

these values.
13

  Under circumstances in which estimation with approach iii-b is statistically 

biased and a positive SMD indicates superiority of the experimental intervention, approach iii-b 

is always upwardly biased, although to a much larger extent when pC ≤ 20% or pC ≥ 80%.
13

 

Approach iii-b always yields equal or smaller standard errors compared with approach iii-a.
13

 For 

pC ≤ 20% or pC ≥ 95%, the 95% CI from approach iii-b typically does not provide the desirable 

coverage. For approach iii-a, the 95% CI provides desirable coverage for pC = 20% and pC = 

95%, however, when pC = 5% the coverage is lower than the nominal level, albeit generally 

larger than the coverage of approach iii-a.
13

  

 

iv) Conversion directly to RD  

Another method for converting the SMD to a RD utilizes the relationship between these two 

measures and the area under the curve (AUC). For any arbitrary threshold t=T, let ( )Cp t  and 

( )Ep t  be the probabilities that the standardized means in the control and intervention group, 

respectively, are greater than or equal to T. If we plot ( )Cp t  (x-axis) against ( )Ep t  (y-axis), we 

get a ROC curve. The area under this ROC curve, the AUC, is the probability that a randomly 

sampled patient in the intervention group has an outcome preferable to that of a randomly 

sampled patient in the control group. One effect measure that is strongly related to the AUC is 

Kraemer’s ‘expanded’ version of the risk difference (RDEXP): the difference between the 

probability that a patient in the treatment has an outcome preferable to one in the control and the 
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probability that a patient in the control has an outcome preferable to one in the treatment.
33;34

 

From this definition, the relationship between the expanded version of the risk difference and the 

area under the curve is given by
34;35

   

  

( ) ( ) (1 ) 2 1EXP E CRD p t p t AUC AUC AUC= − = − − = ⋅ −
 

  

Assuming normality and equal variances in the two groups, we have that 
34;35

 

 

2

SMD
AUC

 
= Φ 

 
 

And we thus have 

     2 1
2

EXP

SMD
RD

 
= ⋅Φ − 

     
 

 

Again, the number needed to treat can easily be obtained based on the calculated risk 

difference 1/EXP EXPNNT RD= . Confidence intervals for either RD or NNT estimates are obtained 

by applying the above conversion to the already obtained confidence limits for the SMD.

 
 

Category 2: Summary estimation based on individual trial summary statistics 

i) Conversion to natural units of most familiar instrument 

As noted for Category 1, approach i), when the trials included in a continuous data meta-analysis 

use different instruments for measuring the effect, interpretability may be enhanced by 

presenting results in the units of the instrument most familiar to the target audience (i.e., natural 
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units).  Because different instruments use different scales, conversion to the units of the most 

popular instrument is essentially an exercise of re-scaling. The re-scaling can be conducted 

separately for the observed means and standard deviations in the intervention and control groups.  

 

Assume a set of trials have used one of two instruments, A and B. Instrument A measures effects 

on a scale from LA to UA, while instrument B uses a scale from LB to UB. Assume instrument A is 

the more familiar, and that we want to convert mean responses and standard deviations measured 

by instrument B to the corresponding quantities that would have been observed if instrument A 

had been used. For any trial, i, where instrument B has been used, we have observed mean 

responses and standard deviations for the control group, B

Cim  and B

Cisd , and similarly B

Eim  and 

B

Eisd  for the intervention group. We then wish to obtain estimates, A

Cim , A

Cisd , A

Eim  and A

Eisd , of 

what would have been observed had instrument A been used in trial i. Let RA= UA – LA and RB= 

UB – LB be the ranges of possible values for instruments A and B, respectively. We then use the 

following formulas to convert (re-scale) mean estimates into the scale of instrument A 

 

( )A B A
Ci Ci B A

B

R
m m L L

R

 
= − + 

       and     ( )A B A
Ei Ei B A

B

R
m m L L

R

 
= − + 

     

 

When converting mean differences that measure change (i.e., difference between pre-

intervention and post-intervention results), the formula is slightly different. Let 
B

Xi PREm −  and 

B

Xi POSTm −  denote the pre-intervention and post-intervention results for instrument B for an 

intervention group X (where X is the group name). Then  
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( )A B B A
Xi Xi Post Xi PRE

B

R
m m m

R
− −

 
= −  

     
 

To convert the standard deviations we simply note that standard deviations are location invariant, 

and so 

A B A
Ci Ci

B

R
sd sd

R

 
=  

       and     
A B A
Ei Ei

B

R
sd sd

R

 
=  

    
 

Once all trial results have been converted to the most familiar instrument, the pooled estimate of 

effect (mean difference) and its associated 95% confidence interval can be obtained by simply 

running a conventional meta-analysis of mean differences. 

 

 

ii) Ratio of means (ROM) 

The ratio of means approach produces a relative measure of comparative effect between the 

control and intervention groups by dividing the mean response in the intervention group by the 

mean response in the control group.
14

 Because the sampling distribution of the ROM is not 

symmetric, the individual trial ROM estimates are pooled on the log scale using the inverse 

variance method. For each trial, i, the log ROM and its associated standard error is given by 

 

ln( ) ln Ei
i

Ci

m
ROM

m

 
=  

   
  

 

And 

( )
2 2

1 1
ln( ) Ei Ci

i

Ei Ei Ci Ci

sd sd
SE ROM

n m n m

   
= ⋅ + ⋅   

      
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A comprehensive simulation study investigated the bias, power, and confidence interval 

coverage associated with the ROM and found that this measure had similar statistical 

performance as the MD and SMD.
14

 Empirical comparison of ROM to SMD and MD across 232 

continuous data Cochrane meta-analyses that included at least 5 trials generally yielded 

concordant results for treatment effect p-values and tests and estimates of heterogeneity.
36

 Linear 

regression with ln(ROM) as the dependent variable and SMD as the independent variable 

showed the following relation between the two effect measures 

 

ln(ROM) = 0.392 ⋅ SMD 

 

with slope standard error of 0.019.
36

 For SMDs of 0.2, 0.5, and 0.8, this relationship corresponds 

to percentage increases in the mean of 8 (95%CI 7 to 9), 22 (95%CI 19 to 24) and 37 (95%CI 33 

to 41) respectively. However, this model explained only 62% of the variation (i.e., R
2
=0.62) and 

it was apparent from the plot that the variation increased with the observed effect. Thus, the 

above confidence intervals are most likely too narrow and should be interpreted with caution.  

The study empirically comparing 232 continuous data Cochrane meta-analyses identified six 

systematic reviews that used the ROM.
36

 

 

Category 3: Summary estimation based on individual trials summary 

statistics and established minimally important differences for all instruments  

i) Mean difference in MID units 

The minimal important difference is the smallest difference that, on average, patients consider 

important.
37-40

  When a MID has been established for two or more instruments measuring the 
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same or similar constructs in a group of clinical trials, one can report trial mean differences in 

MID units, as an alternative to SD units .
12

 For each trial, i, we divide the observed mean 

difference, MDi  by the MID established for the instrument, X, used to measure the effect in trial 

i. That is, our measure of effect is MDi /MIDX, where MIDX denotes the MID established for 

instrument X. This measure has standard error 

 

( )
X X

SE MDMD
SE

MID MID

 
= 

   

 

and the MID-standardized mean differences are pooled using the inverse variance method. 

 

One limitation of reporting mean differences in MID-units is the potential errors that may arise if 

dissimilarities exist in measurement properties of the different instruments. Similarly, there is 

potential for error if the employed MIDs have been established via different methods (e.g., one 

MID is anchor-based whereas another is distribution-based). Lastly, mean differences reported in 

MID units may be susceptible to naive interpretation if emphasis is put on the pooled estimate 

rather than the confidence intervals. For example, a pooled MID-standardized mean difference 

may be smaller than 1 (i.e., on average less than a minimally important effect), but if the 95% 

confidence interval includes 1, one cannot rule out that the average effect may be larger than 1. 

Further, even if the average effect is smaller than the MID, there is still the possibility that a 

worthwhile proportion of patients experience an effect greater than or equal to the MID (see the 

following approaches for further detail).  
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ii-a) Conversion to probabilities and risk difference (RD) or number needed to treat (NNT)  

When an MID has been established for all instruments used across trials, the control and 

intervention group responses in each trial can be converted into trial control group and 

intervention group probabilities by using the MID (of the respective instrument) as the threshold, 

T, in equation (2). That is, for each trial we can calculate the probability of experiencing a 

treatment effect greater than or equal to the MID in the control group and intervention group  

 

1 Ci
Ci

Ci

MID m
p

sd

 −
= −Φ 

             

1 Ei
Ei

Ei

MID m
p

sd

 −
= −Φ 

    (8)
 

 

Having approximated these probabilities one can now derive the risk difference for each trial 

using equation (4). The standard errors for the trial risk differences are given by 

(1 ) (1 )
( ) Ei Ei Ci Ci

i

Ei Ci

p p p p
SE RD

n n

⋅ − ⋅ −
= +  

 

Subsequently, one can pool the estimated trial risk differences using the inverse variance 

method. One can also calculate the pooled NNT using equation (5) (i.e., taking the inverse of the 

pooled RD). 

 

ii-b) Conversion to risks and relative risk (RR) or odds ratio (OR) using MID 

Having approximated the above trial probabilities for the two groups, one can obtain a pooled 

RR or pooled OR in the conventional manner. That is, first calculate the individual trial RRs or 

ORs (equations 6 and 7), then calculate the individual trial standard errors of the ln RRs or ln 
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ORs (ln again being the natural logarithm), the pool the logarithm transformed trial effects and 

exponentiate the pooled log RR or pooled log OR.  The standard error of the trial ln RR and ln 

OR are given by 

1 1 1 1
(ln( ))i

Ci Ci Ei Ei Ci Ei

SE RR
p n p n n n

= + − −
⋅ ⋅

     

1 1 1 1
(ln( ))i

Ci Ci Ei Ei Ci Ei

SE OR
p n p n n n

= + + +
⋅ ⋅

   

 

 

ii-c) Calculating the numbers needed to treat (NNT) from the relative risk (RR) using MID 

Deriving a NNT from the pooled RD is considered sub-optimal when the control group 

probabilities vary appreciably across trials.
28

 Under such scenarios, it is recommended that the 

NNT is based on the pooled RR and some control group probability which is representative of 

the population of interest.
28

  

Having derived a pooled RR via method ii-b (using MID) and assuming some control group 

probability, pC, that is representative of a given population, one can derive an NNT for that 

particular population using the formula 

( )
1

1C

NNT
p RR

=
⋅ −

 

 

 Illustrative Examples 

In all of the below example, results were pooled using the inverse variance method under the 

DerSimonian-Laird random-effects model. 
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Example 1: Respiratory rehabilitation for COPD patients 

A Cochrane review of respiratory rehabilitation for COPD included 31 trials of which 16 

employed two widely used instruments measuring disease-specific health-related quality of life: 

the Chronic Respiratory Disease Questionnaire (CRQ), which uses a 7-point scale (from 1 to 7), 

and the St. Georges Respiratory Questionnaire (SGRQ) which uses a 100-point scale (from 0 to 

100).
17

 Extensive evidence supports the validity and responsiveness of both these instruments, 

and both have established anchor-based MIDs (0.5 on the 7-point CRQ, and 4 on the 100-point 

SGRQ).
39;41

  

 

We pooled data from the 16 trials that used either CRQ or SGRQ with the methods described 

above (Table 2).  Table 3 presents the individual trial summary statistics (group mean, SD, and 

size). For ‘conversion to natural units’ (category 1-i and 2-i) we converted the results to a MD 

corresponding to the CRQ scale. For category 1-i, we did this by first taking the median standard 

deviation of the mean differences across trials that used the CRQ, and multiplied it by the SMD, 

as well as the calculated 95% confidence limits for the SMD. For conversion to probabilities 

(category 1-ii and 3-ii), we assumed a 30% ‘overall’ control group probability. This probability 

was obtained by assuming approximate normality of the control group mean responses, 

calculating the proportion of patients that experienced at least an MID, and using the median of 

proportions across all trials as an estimate for the ‘overall’ control group probability. We 

calculated the MD in MID units using the established MIDs mentioned above. 

 

It was not appropriate to calculate the ROM because the mean differences measured change from 

pre-intervention to post-intervention values and some of these changes were negative.  
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With all methods, the summary estimates yielded large effect sizes (Table 2). All odds ratio 

estimates were very similar. The pooled MD in natural units (i.e., on the CRQ scale) was larger 

when based on the pooled SMD than when based on the individual trial summary statistics. 

Further, the 95%CI for the MD summary estimated based on individual trial summary statistics 

(0.48 to 0.94) did not include the pooled MD based on the SMD (1.02). However, both summary 

estimates as well as the lower 95% CI limits were larger than 0.5 – the MID for the CRQ scale.  

The pooled MD based on the individual trial summary statistics appeared to have higher 

precision.  The estimate of effect in MID units was intermediate (1.75 MID units corresponds to 

0.875 in natural units of the CRQ).  

 

Summary estimates presented as RDs also showed some variation across approaches, although 

clinical inferences are unlikely to differ across the span of estimated RDs. The largest estimate 

was obtained with the direct conversion from SMD (RD=0.40, 95% CI 0.27 to 0.50), and the 

smallest with the conversion from SMD to probabilities (RD=0.28, 95% CI 0.19 to 0.37).   

 

Example 2: Prophylactic dexamethasone for nausea and vomiting after laparoscopic 

cholecystectomy 

A meta-analysis of prophylactic dexamethasone for nausea and vomiting after laparoscopic 

cholecystectomy included 17 trials of which 5 employed two widely used instruments for 

measuring post-operative pain: a 10-point (10 cm) Visual Analogue Scale (VAS) and a 100-point 

(100 mm) VAS scale.
18

 Extensive evidence supports the validity and responsiveness of the 

VAS,
42;43

 and a consensus statement suggested that 1cm on the 10cm scale constituted an MID.
44
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Although this MID is established for changes in pain, we assumed that a MID within an 

individual would correspond, on average, to a MID between individuals, and thus, that the 1cm 

MID would be applicable to post-operative pain scores. 

  

We pooled data from the 5 trials that used two VAS scales – four of which used the 10-point 

scale, and one of which used the 100-point scale. The results are presented in Table 2. Table 4 

presents the individual trial summary statistics (group mean, SD, and size) for the 5 trials.  

 

For ‘conversion to natural units’ we converted the results to an MD corresponding to the 10-

point VAS. For category 1-i, we did this by first taking the median of standard deviations for the 

mean differences across trials that used the 10-point VAS, and subsequently multiplying this 

median by the SMD. Similarly, we obtained 95% CI limits by multiplying the median SD by the 

95% CI limits associated with the SMD. For conversion to probabilities (category 1-ii and 3-ii), 

we assumed a 20% control group risk. This was chosen based on the fact that summary estimates 

converted to odds ratios remain stable for control group probability between 20% and 80%. We 

calculated the MD in MID units using 1cm as the MID. This analysis assumes that the MID 

difference in post-operative pain scores is comparable to the MID for change in pain. To obtain 

control and intervention group probabilities derived from the MID, we assumed that for each 

trial the mean post-operative VAS score in the control group minus the MID (1cm) would 

constitute a minimally important threshold for post-operative pain. We then calculated the 

probabilities of patients having post-operative VAS scores larger than the MID.  
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Column 3 in Table 2 presents the results. The pooled mean difference in natural units (i.e., on the 

10-point VAS) was larger when based on the pooled SMD (category 1) versus the individual trial 

summary statistics (category 2), and the 95%CI for the latter (-0.47 to -0.32) did not include the 

pooled summary estimate based on the SMD (-0.86). However, both summary estimates were 

statistically significant.  The summary estimate based on individual trial summary statistics 

appeared to have higher precision.  

 

Summary estimates presented as RDs were highly discrepant. The RD based on conversion to 

probabilities using MID was small and not statistically significant. The RD based on conversion 

of SMD to probabilities yielded a smaller effect than the RD based on the direct conversion from 

SMD, and the 95%CI of the RD based on the conversion of SMD to probabilities did not include 

the RD summary estimate based on the direct conversion from SMD.  

 

The summary estimates of ORs were also discrepant across categories. The OR estimate from 

category 3 yielded a moderate effect which was not statistically significant, whereas the OR 

estimates from category 1 all yielded large statistically significant effects. The ROM summary 

estimate yielded a relatively small statistically significant effect. The MD presented in MID units 

yielded a relatively small effect which was statistically significant, the entire 95% CI being less 

than the minimally important difference of 1.00. 

 

Discussion 

Summary of findings 
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Meta-analyses of continuous data present difficulties in interpretation when studies use different 

instruments to measure the same or similar construct. Given the interpretational challenges, we 

have categorized and described methods for enhancing interpretability of summary estimates for 

continuous meta-analysis data. These methods fall into three categories based on the data and 

statistics from which they are derived: the pooled SMD (category 1), the individual trial 

summary statistics (category 2), and the individual trial summary statistics and knowledge of the 

MID for each instrument (category 3) (Table 1).  In our examples, all approaches for obtaining 

odds ratios yielded similar results (Table 2). Estimates of differences (i.e., the RD, MD in natural 

units, and MD in MID units) were relatively similar in one examples (example 1), but discrepant 

in one (example 2) (Table 2).  

 

In example 1, the observed magnitude of effect was consistently large across all three categories.  

The relatively large number of trials and patients, and standard deviations that were reasonably 

similar across trials (see Table 3) likely contribute to this consistency. Further, the instruments 

used in these examples (CRQ and SGRQ) also have considerable evidence of validity, are 

commonly used in their respective fields and have established MIDs.
39-41

  

 

The VAS instruments employed in each of the studies in example 2 also have established 

measurement properties and are commonly used to measure pain.
42;43;45;46

 In our dexamethasone 

for pain example (example 2), all summary estimates based on the pooled SMD (category 1) 

appeared large; whereas category 2 and 3 approaches yielded summary estimates suggesting 

small or moderate effects. This discrepancy most likely results from the enrolment of 

homogeneous populations  with respect to pain, as the SDs are much smaller in relation to their 
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accompanying MDs than, for instance, example 1 (Tables 3 and 4). All estimates based on the 

pooled SMD were accompanied by a substantial degree of uncertainty (i.e., wide confidence 

intervals). 

 

Recommendations 

No single approach or category of approaches will be optimal for all continuous data meta-

analysis scenarios (Table 1).  A few clinical and statistical considerations can, however, facilitate 

the preferred approach in a given scenario.  Figure 1 provides an algorithm for choosing an 

optimal approach to enhance interpretability. We prefer and recommend conversion to 

probabilities and risk difference because such measures are useful for trading off desirable and 

undesirable consequences.
26

 Both risk differences and measures of relative effect are very 

familiar to clinicians and clinical researchers. 

 

If an MID has been established for all instruments we recommend using category 3 approach ii) 

since this conversion is anchored in non-arbitrary thresholds (the respective instrument MIDs) 

and is not vulnerable to heterogeneity across SDs. We also recommend use of at least one 

complementary method of reporting. If some of the trials measure the effect with an instrument 

that is very familiar to clinicians and from which, as a result, clinicians can infer the importance 

of the effect, we recommend reporting results in natural units using category 2 approach i). In 

our examples, we have chosen the CRQ and the 10 cm VAS as the familiar instrument for 

natural units. We prefer the category 2 approach i) over category 1 approach i) to generating an 

effect in natural units because the former is not vulnerable to the heterogeneity of the SD of 

included studies.  
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If no very familiar instrument exists, but if an MID has been established for all instruments, a 

MD reported in MID units may be as informative as a MD reported in natural units for a very 

familiar instrument because clinically meaningful inferences are tied to the MID. If a familiar 

instrument does not exist and MIDs have not been established for all instruments, we 

recommend ratio of means as the complementary method of reporting since it is not vulnerable 

to heterogeneity of SDs.  

      

Every approach has at least one limitation; thus our recommendations in Figure 1 should be used 

in concert with Table 1.  For instance, we suggest that if MIDs have not been established for all 

instruments, category 1 approach ii will yield conversion to probabilities. This result may, 

however, be misleading if SDs across trials are considerably different or if, as in example 2, 

patients enrolled are very homogeneous, resulting in small SDs and apparently large effects. 

Additionally, if the preferred measure of effect is the odds ratio, direct conversion from SMD to 

odds ratio (category 1 approach iii) may be statistically superior to category 1, approach i) 

depending on the size of the effect, the sample size, the extent of variability in trial SDs, and 

whether outcome data are symmetrical or skewed.
13

  We refer to the simulation study by Anzures 

et al. for further details regarding this issue.
13

  

 

For the complementary method of reporting, Figure 1 suggests conversion to natural units 

(category 2 approach ii) is preferable over other methods. However, this method may not be 

valid if the involved instruments do not share similar measurement properties (and thus, the 

linear transformation is questionable) or if the validity of estimate of the SD for the most familiar 
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instrument is questionable. In this case, one may prefer MD in MID units or a ratio of means as 

the complementary method of reporting.   

 

A note on the use of category 3 approaches in the absence of established MIDs 

In some situations, it may be possible to use category 3 approach ii even though some of the 

instruments do not have an established anchor-based MID. If instruments without an established 

MID can be converted to an instrument with an established MID (using category 2 approach i), 

one could use the MID for the latter instrument on the converted summary statistics. Another 

approach relies on ‘imputing’ MIDs based on the relationship (ratio) between the MID and SD 

for instruments with established MIDs and using this ratio to infer the MID for instruments 

without an established MID.
47

 For example, authors have noted that the MID is often equal to 

half a standard deviation.
48;49

 For instruments in which this relationship has been well 

established, or for other reasons seems plausible, one could simply use half a standard deviation 

as the MID for the instruments in which the MID has not been established and carry on 

analyzing the data with the approached presented under category 3.
47

  One could also use more 

sophisticated approaches for estimating the MID for instruments in which an anchor-based MID 

is not available (e.g. examine the relationship between the SD and MID for the instruments in 

which it is available and apply that ratio to the instruments for which it is not). 
47

 

  

A note on determining control group probabilities in the absence of MIDs 

When it is not possible to derive a pooled RD, NNT, RR, or OR using MIDs, one can employ 

conversion to probabilities from SMD (category 1 approach ii-a, and ii-b). This approach 

requires specification of some control group probability that should be as non-arbitrary as 
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possible. In the absence of established MIDs for all instruments it may still be possible to derive 

meaningful plausible control group probabilities. First, if some but not all instruments have an 

established MID, control group probabilities can be established for these instruments using 

equation (8) and subsequently used to inform the value of the control group probability. Second, 

investigators may have reported a related dichotomous measure that one can use to specify the 

control group probability.  For instance, in the systematic review of corticosteroids for pain, the 

investigators report the number of patients reporting the need for rescue analgesia.
18

 Therefore, it 

may be advisable to establish some plausible minimum and maximum control group probability 

base on whatever information is available on the MIDs, and run sensitivity analysis of the chosen 

effect measure. Given that the derived summary estimate will typically have little sensitivity 

within a wide span of control group probabilities, this sensitivity analysis may yield reassuring 

results (i.e. the span of plausible estimates will be relatively narrow).  

 

Concluding remarks 

We have identified and described available approaches for presenting pooled estimates of 

continuous data when trials measure effects using different instruments. We have summarized 

their relative strengths and limitations, illustrated their performance in two examples and 

provided recommendations for choosing optimal approaches under common clinical and 

statistical circumstances. In the light of our findings, we believe that the methods we have 

outlined and recommended are likely to enhance the interpretability, and thus, the usefulness of 

systematic reviews of continuous outcomes.   
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Methods of reporting Strengths Limitations 

 

Category 1: Summary estimation based on SMD 

 

 

Category strength: Can always be calculated if 

variance data provided 

 

Category limitation: Validity depends on standard 

deviations being similar across trials.  

 

 The standardized mean difference (SMD) Can always be obtained Not appealing to clinicians 

 i) Conversion to natural units of most familiar 

instrument 

Easy to calculate if representative standard 

deviation of target instrument can be obtained. 

Easier to interpret difference on a well-known 

instrument than in standard deviation units. 

Preserves power and precision. 

 

May provide misleading results if standard deviation 

of target instrument is not appropriately 

representative or poorly estimated. 

 

 ii) Conversion to probabilities and risk differences 

(RD), number needed to treat (NNT) or to odds 

ratios (OR) 

  

 

Interpretation familiar to clinicians.  Risk 

differences ideal for trading off desirable and 

undesirable consequences of the intervention. 

May be misleading if the assumed meta-analysis 

control group probability is incorrect.  

 

 iii) Conversion directly to odds ratios 

 

Interpretation of relative measures familiar to 

clinicians, though they may interpret odds ratios 

as relative risks.  

May be inaccurate for low and high (i.e. <20%  or 

>80%) control grou probabilities. Danger in 

interpreting OR as the same for all control group 

probabilities. 

  

 iv) Conversion directly to risk difference or 

number needed to treat 

Does not depend on assumption of meta-analysis 

control group probability. Risk differences ideal 

for trading off desirable and undesirable 

consequences of the intervention. 

 

Interpretation of RD and NNT somewhat different 

from the conventional interpretation due to 

derivation from ‘expanded’ version of  RD. Danger 

in interpreting RD as the same for all control group 

probabilities. 

    

 

Category 2: Summary estimation based on 

individual trial  summary statistics 
 

 

Category strength: Validity does not depend on 

standard deviations being similar across studies 

  

 

Category limitations: Interpretation not tied to 

empirical evidence of what patients consider 

important. Conversion to measures that resonate well 

with clinicians (e.g., risk difference) not feasible. 

 

 i) Conversion to natural units of most familiar 

instrument 

Easier to interpret difference on a well-known 

instrument than in standard deviation units. 

Preserves power and precision. 

 

The linear transformation may not be valid due to 

different measurement properties of instruments  
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ii) Ratio of means (ROM) 

 

Straightforward interpretation for clinicians while 

retaining continuous variable measurement.  

Desirable statistical properties. 

 

 

Not applicable to change data where mean responses 

can be negative 

 

Category 3: Summary estimation based on 

individual trial summary statistics and established 

minimally important differences (MIDs) for all 

instruments 

Category strength: Estimates intervention effects 

in relation to established MID. Validity does not 

depend on standard deviations being similar 

across studies 

 

Category limitation: Not feasible when MID has not 

been established  

 i) Mean difference in MID units Reports the mean difference on a highly 

interpretable scale. Preserved power and 

precision. 

Loss of validity if dissimilarities exist in 

measurement properties of the different instruments, 

or if MIDs established via different methods (e.g., 

anchor vs distribution based).  Susceptible to naive 

interpretation (e.g., effect less than 1 MID no one 

benefits) 

 

 ii) Conversion to risk and risk difference, number 

needed to treat or to odds ratio using MID  

Interpretation familiar to clinicians.  Risk 

differences ideal for trading off desirable and 

undesirable consequences of the intervention and 

is particularly useful if tied to the MID 

Control group risk must be relatively constant for 

pooled RD to be meaningful. May produce 

artificially small effects if most patients (e.g., >95%) 

in both groups experience >MID effects. 

 

Table 1. Summary of strength and limitations associated with the three categories and the respective methods within each category. The category strengths and 

limitations apply to all methods covered under a category. 
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  Pooled estimate and 95% CI 

 Methods of reporting Interventions for COPD  Dexamethasone for pain 

 

Category 1: Summary estimation based on SMD 

 The standardized mean difference (SMD) SMD=0.72 (95% CI 0.48 to 0.96) SMD=-0.79 (95% CI -1.41 to -0.17) 

 i) Conversion to natural units of most 

familiar instrument 

1MD=1.02 (95% CI 0.68 to 1.36)  2MD=-0.81 (95% CI -1.45 to -0.18) 

 ii-a) Conversion to probabilities and risk 

difference (RD) 

3RD=0.28 (95% CI 0.19 to 0.37) 4RD=-0.15 (95% CI -0.19 to -0.04) 

 ii-b) Conversion to probabilities and odds 

ratio (OR)  

3OR=3.22 (95% CI 2.24 to 4.74) 4OR=0.21 (95% CI 0.04 to 0.76) 

 iii-a) Conversion directly to odds ratio 

 

OR=3.74 (95% CI 2.43 to 5.68) OR=0.23 (95% CI 0.08 to 0.74) 

 iii-b) Conversion directly to odds ratio 

  

OR=3.36 (95% CI 2.24 to 4.87) OR=0.27 (95% CI 0.10 to 0.76) 

 iv)  Conversion directly to risk difference  RD=0.40 (95% CI 0.27 to 0.50) RD=-0.42 (95% CI 0.68 to -0.10) 

 

Category 2: Summary estimation based on individual trial summary statistics 

 

 i) Conversion to natural units of most 

familiar instrument 

5MD=0.71 (95% CI 0.48 to 0.94)  6MD=-0.35 (95% CI -0.65 to -0.05)  

 iv) Ratio of means (ROM) 7Not applicable ROM=0.87 (95% CI 0.78 to 0.98) 

Category 3: Summary estimation based on individual trial summary statistics and established MID for all instruments 

 i) Mean difference in MID units MD=1.75 (95% CI 1.37 to 2.13) MD=-0.40 (95% CI -0.74 to -0.07) 

 ii-a) Conversion to probabilities and RD RD=0.31 (95% CI 0.22 to 0.40) RD=-0.03 (95% CI -0.07 to 0.01) 

 ii-b) Conversion to probabilities and OR  OR=3.36 (95% CI 2.31 to 4.86) OR=0.64 (95% CI 0.34 to 1.17) 

1Based on the median SD=1.32 for the CRQ scale. 2Based on the median SD=1.04 for the 10-point VAS scale. 3Based on 30% control 

group risk (which is approximately the median of the 16 trials). 4Based on 20% control group risk (sensitivity analysis using control 

groups risks between 10% and 90% yielded similar findings). 5Measured on CRQ scale. 6Measured on a 10-point Visual Analogue 

Scale (VAS). 7Measure change from baseline which can be negative and therefore has no natural zero
 

Table 2. Summary estimates and their associated 95% confidence intervals from each of the identified methods applied to  

the two data sets. 
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 Intervention group  Control group 

 Mean SD n  Mean SD n 

 

Trials that used CRG 

Behnke (2000) 1.90 0.70 15  -0.07 1.10 15 

Cambach (1997) 1.04 0.91 15  0.01 0.75 8 

Goldstein (1994) 0.43 0.92 40  -0.13 0.75 40 

Gosselink (2000) 0.67 1.02 34  -0.10 1.11 28 

*Griffiths (2000) 0.97 1.00 93  -0.15 0.90 91 

Guell (1995) 0.98 1.01 29  -0.18 1.05 27 

Guell (1998) 0.45 0.89 18  -0.30 0.97 17 

Hernandez (2000) 0.86 1.00 20  0.14 1.03 17 

Simpson (1992) 0.86 1.26 14  0.13 1.11 14 

Singh (2003) 0.91 0.75 20  0.10 0.68 20 

Wijkstra (1994) 0.80 0.83 28  0.07 0.82 15 

 

Trials that used SGRQ 

Boxall (2005) -5.8 11.8 23  -1.4 13.3 23 

Chlumsky (2001) -4.1 19.8 13  -4.2 19.2 6 

Engstrom (1999) 0.3 17.3 26  0.5 16.2 24 

Finnerty (2001) -9.3 12.2 24  -2.2 15.0 25 

*Griffiths (2000) -7.1 15.5 93  1.3 11.7 91 

Ringbaek (2000) -2.1 19.0 17  -2.2 17.0 19 

 

* Griffiths study used both CRQ and SGRQ. Only CRQ results were used for the analyses. 

Table 3. Individual trial summary statistics from the meta-analysis on interventions for COPD 
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 Intervention group  Control group 

 Mean SD n  Mean SD N 

 

Trials that used 10-point VAS 

Elkahim (2002) 3.06 1.24 120  3.70 1.40 30 

Feo (2005) 1.71 0.44 49  1.83 0.29 52 

Nesek-Adam (2007) 2.76 0.57 80  2.91 0.69 80 

Wang (1999) 2.65 0.77 40  2.90 0.89 38 

 

Trials that used 100-point VAS 

Ozdamar (2006) 20.4 2.31 25  27.1 1.86 25 

 

Table 4. Individual trial summary statistics from the meta-analysis on dexamethasone for reducing  

post-operative pain in patients undergoing laparoscopic cholecystectomy. 
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Chapter 6: Some additional analyses linking the issues explored in 

chapters 2, 3 and 4 
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Additional analysis #1:  

Stability of alternative measures of the percentage of heterogeneity (D
2
) 

 

In chapter 3, it was explored how the degree of heterogeneity, I
2
, evolved (and fluctuated) as the 

number of events and trials increased. In chapter 4, an alternative method for measuring the degree 

of heterogeneity, D
2
, was employed because this measure allowed for comparison of the degree of 

heterogeneity under all five random-effects models (between-trial variance estimators) that were 

studied in this chapter. Given that the I
2
 estimate demonstrated considerable variation over time in 

chapter 3, it seems worthwhile to explore whether any of the five alternatives considered in chapter 

4 are less variable over time and become stable with fewer events and trials.  

 

Figures 1 to 10 show the plots of the cumulative I
2
 estimate and the cumulative D

2
 estimate based 

on each of the five between-trial variance estimators considered in chapter 4. In addition to plotting 

the cumulative I
2
 estimate, Figures 1 and 2 plot the cumulative DDL

2
 estimate, Figures 3 and 4 plot 

the cumulative DHM
2
 estimate, Figures 5 and 6 plot the cumulative DREML

2
 estimate, Figures 7 and 8 

plot the cumulative DHE
2
 estimate, and Figures 9 and 10 plot the cumulative DSJ

2
 estimate. 

The cumulative DDL
2
 estimate is consistently greater than or equal to the cumulative I

2
 estimate. 

Fluctuations in these two measures always occur in the same direction, and it seems that DDL
2
 

consistently incurs greater or similar fluctuations than I
2
. The cumulative DHM

2
 estimate is 

consistently greater than the cumulative I
2
 estimate. In roughly half of the 16 meta-analyses, DHM

2
 

seems to stabilize faster or incur less fluctuations compared with I
2
, in the other half the two 

measures incur approximately the same fluctuation, albeit often in different directions. In most of 
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the 16 meta-analyses, DREML
2
, DHE

2
, and DSJ

2
 all incur moderate to substantially larger fluctuations 

than I
2
 or stabilize slower. 

 

In summary, DHM
2
 appears to be the preferred measure of heterogeneity. This additional analysis 

thereby confirms the recommended use of DHM
2
 in chapter 4. 
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Additional analysis #2:  

Discrepancies between random-effects model inferences in relation to the 

optimal information size (OIS) 

 

In chapter 2, I demonstrated that the risk and possible magnitude of overestimation of meta-

analyzed intervention effects were generally ‘acceptably’ low once a meta-analysis had surpassed 

its OIS, and often considerably before that. As mentioned in chapter 3, the reliability of 

heterogeneity estimates is to some degree determined by the reliability of the meta-analysed 

intervention effect. This is also the case for the reliability of all between-trial variance estimators 

considered in chapter 4 since they are all a function of the sum of squared distances between the 

trial intervention effect estimates and the meta-analysed intervention effect estimate. An unreliable 

meta-analysed intervention effect estimate could impact the between-trial variance estimate. 

Depending on which estimator is used, this impact may be small or large and the impact may 

depend on the accumulated amount of information.      

   In chapter 4, basic statistical inferences from five random-effects models (based on five different 

between-trial variance estimators) were compared among 920 Cochrane ‘primary outcome’ meta-

analyses. Not infrequently were discrepancies observed with regard to conventional statistical 

significance for some random-effects models (estimators), and quite often the measured degree of 

heterogeneity varied between models. Given the findings in chapters 2 and 3 and the above 

additional analysis, it therefore seemed worthwhile to explore whether the intensity of inferential 

discrepancies observed in chapter 4 would vary with the meta-analysis information size. In this 

additional analysis the primary analyses from chapter 4 on statistical significance and degrees of 

heterogeneity are repeated for three subgroups of the 920 meta-analyses. Each of the three 
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subgroups are determined by the accumulated meta-analysis information size: ‘less than 50% of the 

OIS’, ‘50% to 100% of the OIS’, and ‘OIS surpassed’. The OIS estimates for all meta-analyses 

were geared to detect a relative risk reduction of 25% with a maximum 5% type I error, maximum 

10% type II error (i.e., 90% power), assuming a control group risk equal to the median among all 

trials, and correcting for a 33% heterogeneity. Due to a comment from a peer reviewer in between a 

previous version and the final version of this thesis, some of these analyses are already included 

chapter 4. 

 

Tables 1 to 4 show the number and percentage of disagreements on conventional statistical 

significance sub-grouped by the information sizes. The inferences from the DerSimonian-Laird 

(DL) random-effects model are compared to the inferences from the Hartung-Makambi (HM) 

random-effects model in Table 1, the restricted maximum likelihood (REML) random-effects model 

in Table 2, the Hedges (HE) random-effects model in Table 3, and the Sidik-Jonkman (SJ) random-

effects model in Table 4. For the comparison of statistical significance inferences of the DL and 

HM random-effects models, the kappa estimate improves slightly when going from less than 50% 

of the OIS to between 50% and 100% of the OIS. As well, the percentage of statistically significant 

DL random-effects meta-analyses which are not statistically significant with the HM random-

effects model is roughly twice as large when less than 50% of the OIS is accumulated. For the 

remaining comparisons, a slight decrease in the kappa estimate occurs for meta-analyses where the 

OIS is surpassed. This seems to be due to an increase in non-significant DL meta-analyses which 

become statistically significant when using any of the three alternative models (REML, HE, or SJ). 

 

Figures 11 to 14 present the degree of heterogeneity under the DerSimonian-Laird random-effects 

model (x-axis) plotted against the degree of heterogeneity under the each of the four alternative 
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models (y-axis). No apparent differences were observed in the plots. Thus, on average, 

discrepancies about the degree of heterogeneity seem unaffected by the amount of accumulated 

information.  

 

In summary, inferential discrepancies caused by the choice of between-trial variance estimator, on 

average, appear relatively constant with varying accumulated meta-analysis information. 
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Tables 
 

 

 

Alternative  estimator 

DL random-effects meta-analyses*  

Not significant 

(n=324) 

Significant 

(n=192) 

  

Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 306 (99.4%) 18 (9.4%) 
0.91 (0.88-0.95) 

  Significant 2 (0.6%) 174 (90.6%) 

Between 50% and 100% of OIS achieved  

  Non-significant 79 (100%) 3 (3.8%) 
0.96 (0.92-1.00) 

  Significant 0 (0%) 75 (96.2%) 

OIS surpassed   

  Non-significant 119 (100%) 7 (4.9%) 
0.95 (0.91-0.99) 

  Significant 0 (0%) 137 (96.2%) 

 
*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-analysis 

strata. Constant continuity correction was used for handling all zero-event arms. 

CI: Confidence interval 

 

Table 1 Subgroup analysis by achieved levels of information size. Number and percentage of 

meta-analyses where the DerSimonian-Laird (DL) estimator compared to the Hartung-Makambi 

(HM) estimator yielded the same or opposite inference with regard to statistical significance. 
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Alternative  estimator 

DL random-effects meta-analyses*  

Not significant 

(n=324) 

Significant 

(n=192) 

  

Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 305 (99.0%) 0 (0%) 
0.99 (0.97-1.00) 

  Significant 3 (1.0%) 192 (100%) 

Between 50% and 100% of OIS achieved  

  Non-significant 79 (100%) 1 (1.3%) 
0.99 (0.96-1.00) 

  Significant 0 (0%) 77 (98.7%) 

OIS surpassed   

  Non-significant 113 (95.0%) 3 (2.1%) 
0.93 (0.89-0.98) 

  Significant 6 (5.0%) 141 (97.9%) 

 
*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-analysis 

strata. Constant continuity correction was used for handling all zero-event arms. 

CI: Confidence interval 

 

Table 2 Subgroup analyses by achieved levels of information size. Number and percentage of 
meta-analyses where the DerSimonian-Laird (DL) estimator compared to the restricted maximum 

likelihood (REML) estimator yielded the same or opposite inference with regard to statistical 

significance. 
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Alternative  estimator 

DL random-effects meta-analyses*  

Not significant 

(n=324) 

Significant 

(n=192) 

  

Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 300 (97.4%) 20 (10.4%) 
0.88 (0.84-0.92) 

  Significant 8 (2.6%) 172 (89.6%) 

Between 50% and 100% of OIS achieved  

  Non-significant 78 (98.7%) 10 (12.8%) 
0.86 (0.78-0.94) 

  Significant 1 (1.3%) 68 (87.2%) 

OIS surpassed   

  Non-significant 113 (95.0%) 18 (12.5%) 
0.82 (0.75-0.89) 

  Significant 6 (5.0%) 126 (87.5%) 

 
*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-analysis 

strata. Constant continuity correction was used for handling all zero-event arms. 

CI: Confidence interval 

 

Table 3 Subgroup analyses by achieved levels of information size. Number and percentage of 
meta-analyses where the DerSimonian-Laird (DL) estimator compared to the Hedges (HE) 

estimator yielded the same or opposite inference with regard to statistical significance. 
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Alternative  estimator 

DL random-effects meta-analyses*  

Not significant 

(n=324) 

Significant 

(n=192) 

  

Kappa (95%CI) 

Less than 50% of OIS achieved  

  Non-significant 308 (98.4%) 20 (10.4%) 
0.89 (0.85-0.93) 

  Significant 5 (1.6%) 172 (89.6%) 

Between 50% and 100% of OIS achieved  

  Non-significant 79 (100%) 9 (11.5%) 
0.89 (0.81-0.96) 

  Significant 0 (0%) 69 (88.5%) 

OIS surpassed   

  Non-significant 117 (98.3%) 18 (12.5%) 
0.85 (0.79-0.91) 

  Significant 2 (1.7%) 126 (87.5%) 

 
*The percentages are calculated within the ‘not significant’ and ‘significant’ meta-analysis 

strata. Constant continuity correction was used for handling all zero-event arms. 

CI: Confidence interval 

 

Table 4 Subgroup analysis by achieved levels of information size. Number and percentage of 
meta-analyses where the DerSimonian-Laird (DL) estimator compared to the Sidik-Jonkman (SJ) 

estimator yielded the same or opposite inference with regard to statistical significance. 
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Figures 

Figure 1 Presents the evolution of the cumulative I
2
 estimates and cumulative DDL

2
 estimates in meta-analyses (1) to (8) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DDL
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 2 Presents the evolution of the cumulative I
2
 estimates and cumulative DDL

2
 estimates in meta-analyses (9) to (16) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (         ) and the cumulative DDL
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 3 Presents the evolution of the cumulative I
2
 estimates and cumulative DHM

2
 estimates in meta-analyses (1) to (8) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DHM
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 4 Presents the evolution of the cumulative I
2
 estimates and cumulative DHM

2
 estimates in meta-analyses (9) to (16) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DHM
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 5 Presents the evolution of the cumulative I
2
 estimates and cumulative DREML

2
 estimates in meta-analyses (1) to (8) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DREML
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to 

the cumulative number of events. 
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Figure 6 Presents the evolution of the cumulative I
2
 estimates and cumulative DREML

2
 estimates in meta-analyses (9) to (16) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (         ) and the cumulative DREML
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to 

the cumulative number of events. 
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Figure 7 Presents the evolution of the cumulative I
2
 estimates and cumulative DHE

2
 estimates in meta-analyses (1) to (8) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DHE
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 8 Presents the evolution of the cumulative I
2
 estimates and cumulative DHE

2
 estimates in meta-analyses (9) to (16) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DHE
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 



Ph.D. Thesis – Kristian Thorlund; McMaster University – Health Research Methodology - Biostatistics 

198 

  

 

Figure 9 Presents the evolution of the cumulative I
2
 estimates and cumulative DSJ

2
 estimates in meta-analyses (1) to (8) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DSJ
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 10 Presents the evolution of the cumulative I
2
 estimates and cumulative DSJ

2
 estimates in meta-analyses (9) to (16) from chapter 3. The cumulative I

2
 are 

represented by the dot-dashed line (        ) and the cumulative DSJ
2
 by the dotted line (       ). The cumulative heterogeneity estimates are plotted in relation to the 

cumulative number of events. 
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Figure 11 Presents of degree of heterogeneity under the DerSimonian-Laird random-effects model (x-axis) plotted against the degree of heterogeneity under the 

Hartung-Makambi (HM) random-effects model (y-axis) for the subsets of meta-analyses where less than 50% of the OIS is achieved, between 50% and 100% of 

the OIS is achieved, and where the OIS is surpassed. 
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Figure 12 Presents of degree of heterogeneity under the DerSimonian-Laird random-effects model (x-axis) plotted against the degree of heterogeneity under the 

restricted maximum-likelihood (REML) random-effects model (y-axis) for the subsets of meta-analyses where less than 50% of the OIS is achieved, between 

50% and 100% of the OIS is achieved, and where the OIS is surpassed. 
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Figure 13 Presents of degree of heterogeneity under the DerSimonian-Laird random-effects model (x-axis) plotted against the degree of heterogeneity under the 

Hedges (HE) random-effects model (y-axis) for the subsets of meta-analyses where less than 50% of the OIS is achieved, between 50% and 100% of the OIS is 

achieved, and where the OIS is surpassed.
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Figure 14 Presents of degree of heterogeneity under the DerSimonian-Laird random-effects model (x-axis) plotted against the degree of heterogeneity under the 

Sidik-Jonkman (SJ) random-effects models (y-axis) for the subsets of meta-analyses where less than 50% of the OIS is achieved, between 50% and 100% of the 

OIS is achieved, and where the OIS is surpassed.
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Chapter 7: Discussion 

 

This chapter is structured as follows. First, the key findings of the chapters 2 to 6 are 

summarized in brief. Second, I consider whether the studies presented in chapters 2, 3, 4, and 5 

in collection meet the objectives of this thesis. Third, I reflect on how the findings might impact 

meta-analytic practice, either single-handedly or in concert with other past and future 

publications. Lastly, because proper dissemination of statistical issues in meta-analysis to a 

clinical audience is an overarching topic of this thesis, I reflect on the dissemination challenges 

incurred in the presented studies.  

 

Summary of findings 

The studies presented in chapter 2, 3, 4 and 5 all contribute to furthering our understanding of 

statistical metrics in meta-analysis that are conceptually relatively simple.  

In chapter 2, the simulations demonstrated that random error (chance) plays an important role in 

estimation of intervention effects in meta-analysis: reaching the optimal information size (OIS, 

i.e., the required meta-analysis sample size) provides good protection against overestimation due 

to random error. On the more complex side, the simulation findings provide insights on the 

magnitude and risk of overestimating an intervention effect due to random error before 

surpassing the OIS.  

In chapter 3 it was shown empirically that the reliability of the popular measure of heterogeneity, 

I
2
, does too depend on the amount of accumulated evidence.  Theoretical arguments and 

empirical evidence were provided to demonstrate that I
2
 can and often will incur considerable 

fluctuations as evidence accumulates and that these fluctuations occur when the evidence is 
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sparse (e.g., when the meta-analysis includes less than 200 events). Further, the 95% confidence 

intervals for I
2
 demonstrated satisfactory performance.    

In chapter 4 three popular meta-analytic inferential measures (the p-value and the 95% 

confidence intervals for the meta-analysed intervention effect, and the degree/percentage of 

heterogeneity) from the conventional DerSimonian-Laird random-effects were compared with 

the same three inferential measures from four selected alternative random-effects models. First, it 

was shown empirically that while p-values and 95% confidence intervals based on alternative 

random-effects models do not infrequently differ from the ones of the DerSimonian-Laird 

random-effects model, such differences are rarely of a magnitude that would cause alterations in 

the statistical inferences about the overall intervention effect, let alone the conclusion of the 

systematic review in which the random-effects meta-analysis is included. Second, it was shown 

that the estimated degree (percentage) of heterogeneity in meta-analyses based on alternative 

random-effects models often differ substantially from that of the DerSimonian-Laird random-

effects model. One of the four alternative random-effects models - the Hartung-Makambi model 

- yielded heterogeneity estimates that behaved in a stable and predictable manner in relation to 

the DerSimonian-Laird model. The remaining three models did not. 

In chapter 5 the strengths and limitations of twelve methods for enhancing interpretability of 

continuous outcome meta-analyses were reviewed. Their performance was assessed in three 

illustrative examples, and recommendations for which of the reviewed methods to use were 

provided in the form of a simple 2-stage algorithm. 

In chapter 6 two additional analyses cast light on issues in chapter 2, 3 and 4 that were 

interrelated. The first additional analysis explored the extent to which the measured degree of 

heterogeneity based on different random-effects models fluctuated over time. It was shown that 
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the measure based on the Hartung-Makambi model fluctuated less and became stable earlier on 

when compared with the measure based on the DerSimonian-Laird model (both I
2
 and DDL

2
). 

Measuring the degree of heterogeneity with the three other alternative random-effects models, 

however, resulted in larger fluctuations and required more evidence to become stable. The 

second analysis explored whether the intensity of inferential discrepancies observed in chapter 4 

would vary with the meta-analysis information size. Only minimal changes were observed. 

 

Thesis objectives – were they met? 

To recapitulate, the objectives of this thesis were to fill some of the demand for statistical 

contributions to meta-analysis where  

1) improvements to current statistical practice in meta-analysis are conveyed at the level 

that most systematic review authors will be able to understand  

2) current statistical methods which are widely applied in meta-analytic practice undergo 

thorough testing and examination. 

 

The key finding in chapter 2 - that the optimal information size provides good protection against 

overestimation of intervention effects – signifies an important milestone in the effort to promote 

information size requirements in meta-analysis. The finding confirms the theoretical arguments 

supporting information size requirements, and it will provide proponents of the OIS with much 

better basis for promoting the approach. The second key finding - that random error does pose a 

problem before reaching the OIS – is sufficiently simple and strong to meet objective 1. 

Hopefully this finding will aid in instilling the necessary additional caution among authors when 

it comes to interpretation of intervention effects. The many figures in chapter 2 from which 
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authors of meta-analyses can determine the approximate risk of overestimation due to random 

error are extremely comprehensive. It is unlikely that systematic review authors will find these 

figures easy to use in practice. In this regard, objective 1 was not met. It should, however, be 

noted that this manuscript originally only included the simulations based on the survey of 

Cochrane Heart group mortality meta-analyses (thus, a third of what it does now), but was 

expanded as a result of peer reviewer comments. In its original format, the tables and figures 

were much less comprehensive, and would likely have been interpretable to systematic review 

authors in cardiology.    

   In chapter 3 the theoretical properties of I
2
 and its 95% confidence interval were described in 

an as non-statistical as possible language. The 16 plots and the reported span of fluctuations are 

easy to interpret. In this capacity, the study presented in chapter 3 meets thesis objective 1. The 

demonstrated substantial fluctuations of I
2
 and the satisfactory performance of the associated 

95% confidence intervals are scientifically important. Properties of the I
2
 measure and its 

associated 95% confidence intervals have not previously been studied empirically in a temporal 

framework. In this capacity, the study presented in chapter also meets thesis objective 2.   

   In chapter 4, thesis objectives 1 and 2 were only partially met. The potential impact of using 

different random-effects models were described in fairly lay language in the introduction. This 

was further elaborated on in the description of the measures of inferential discrepancies in the 

methods section. Further, the discussion also offers some guidance for meta-analytic practice 

given the findings of this study. The descriptions of the random-effects methods, however, were 

written in a statistically heavy language. Earlier versions of the manuscript included only 

conceptual descriptions, but due to reviewer requests for more statistical detail, this was changed. 

Objective 2 was met with regards to inferences about the intervention effect, but not with regards 
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to inferences about the degree of heterogeneity. It was evident the choice of random-effects 

model does not have an important impact on the inferences about the overall intervention effect, 

let alone the conclusion of the systematic review that includes the meta-analysis. Thus, this 

finding is comforting since the contrary would have indicated that many statistically significant 

findings in published DerSimonian-Laird random-effects meta-analyses would likely not have 

been statistically significant had other random-effects models been used. The study also helps to 

direct research efforts in meta-analysis since clearly further simulations studies exploring 

inferences about the overall intervention effect would not be worthwhile. The comparisons of the 

degree of heterogeneity from the considered random-effects models does not directly apply to 

objective 2 since none of the considered heterogeneity measures are applied widely in practice. 

However, DDL
2
 is a reasonable surrogate for I

2
 in this capacity and so, objective 2 is met 

indirectly.  

   Chapter 5, although fairly statistical, meets objective 1 for a number of reasons. First, the 

strengths and limitations of the reviewed methods have never before been described collectively. 

Second, most of the reviewed methods were presented in a highly statistically oriented format in 

reviewed methodological papers. Lastly, and probably most importantly, the provided 

recommendations are tailored to cater to a clinical audience, and they are extremely simple, so 

most systematic review authors with basic biostatistics training should be able to follow them. 

Objective 2 was also met. Most importantly, many of the properties in Table 1 have not 

previously been mentioned in the literature. The performances of the reviewed methods were 

also contrasted in Table 2.   
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How are the findings likely to impact meta-analytic practice? 

In this section I discuss how each of the chapters are likely to impact meta-analytic practice 

singlehandedly or in collection with other research or initiatives. For this discussion it is assumed 

that the manuscripts presented in chapter 2, 3, 4, and 5 will be published in peer reviewed 

journals in the near future. 

   Chapter 2 will probably not have much impact on the rate with which OIS becomes an 

increasingly integral part of meta-analysis. The GRADE working group is already doing their 

part to ensure widespread use of OIS. Further, software for calculating the OIS is expected to be 

released in August 2011 and may aid the propagation of OIS.
1
 Authors of meta-analyses also 

need to pay attention to random error when the OIS is not reached, and analyse and interpret 

their data accordingly. Again, the GRADE working group provides recommendations for such 

conduct. Other leading groups of methodologists, for example, the Cochrane Collaboration 

Statistical Methods Group are now debating this issue (e.g., via their mailing list). The issue of 

random error in meta-analysis has also received a great deal of attention in the methodological 

literature over the past five years.
2-14

  

   The immediate impact of the study presented in chapter 3 is unlikely to be profound. The study 

is not the first to examine various properties of I
2
 and its associated 95% confidence intervals, 

and it is not the first to describe various properties of I
2
 and its associated 95% confidence 

intervals in a lay language. Other studies have even been of a grander scale. It thus seems that 

methodological publications on this topic singlehandedly do not suffice to change meta-analytic 

practice. In collection with past and future studies, this study may contribute sufficiently to the 

awareness of the need for reporting 95% confidence intervals for I
2
. Once sufficient awareness 

has been created, it is likely that 95% confidence intervals for I
2
 will become standard in Review 
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Manager and other meta-analysis software packages. To create sufficient awareness about the 

risk of fluctuations of I
2
, it is likely that specific meta-epidemiologic evidence about the causes 

of fluctuations will need to emerge. By analogy, if no evidence existed about the sources of bias 

on intervention effects, it is likely that meta-analysts would be less cautious about interpreting 

intervention effects. 

   Chapter 4 leaves unanswered questions with regard to the estimation of the degree (percentage) 

of heterogeneity. In the first of the additional analyses in chapter 6, the degree of heterogeneity 

based on the Hartung-Makambi estimator seems preferable. However, 95% confidence intervals 

have not been developed for the D
2
 type of heterogeneity measure. If this proves to be too 

challenging of a task, one could instead derive an I
2
 type heterogeneity measure based on the 

Hartung-Makambi model and then derive 95% confidence intervals in a similar fashion as done 

by Higgins and Thompson.
15

 In any case, the road to widespread dissemination would be long. It 

would require mathematical derivations, comprehensive simulation studies, empirical 

confirmatory studies, and lastly, didactic papers and other efforts by groups of methodologists. 

   Chapter 5, in time, will likely have great impact on meta-analytic practice. It is the first in a 

series of related papers and initiatives. It is deliberately methodologically exhaustive since the 

authors of this paper required in-depth knowledge of the reviewed methods to write up two 

didactic manuscripts post its publication. One subsequent manuscript will be a light version 

which is targeted even more to a clinical audience. This paper is also the 13
th

 in a series of 

GRADE papers planned to be published in the Journal of Clinical Epidemiology. The second 

subsequent work that will be undertaken as a result of this paper is a chapter in the Cochrane 

Handbook on reporting and analysing health related quality of life and patient reported 
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outcomes. In addition, empirical studies and methodological extensions are already 

underway.
16,17

 

   

Further reflections 

An overarching topic in this thesis is the need for methodological papers that can properly 

describe statistical issues in meta-analysis to a clinical audience. In this thesis, this has been done 

through simulation, empirical study, and methodological review. Each approach requires an in-

depth statistical understanding of the issues at play before one can even begin to properly re-

articulate these issues in a language that will resonate well with clinicians. For statisticians, 

however, once one possesses such in-depth knowledge many other complex statistical questions 

become apparent. Many statisticians may find it more compelling to dedicate their time to 

answering such complex questions rather than dedicating their time to verifying simple implicit 

assumptions (e.g., that I
2
 is reliable over time) and communicating these issues at a basic 

statistical level. Another challenge with increasing the number of scientific publications that 

meet objective 1 or 2 of this thesis is the peer review system that journals use. When submitting 

manuscripts that fall into the category of the manuscripts in this thesis, the journal editors will 

typically assign at least one statistical expert as a peer reviewer. This person will likely request 

more in-detail explanations of the statistical issues (including more complex equations), and will 

not take into account what communication style is most likely to resonate well with clinicians. 

This, for example, was the case with the manuscripts presented in chapter 2 and 4. Nevertheless, 

there is reason to believe better times are ahead. The number of online access journals have 

soared this past decade and with it has the number of specialized journals. One journal, Research 

Synthesis Methodology, has emerged to deal with methodological issues in meta-analysis only, 
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and one journal, BMC Systematic Reviews, has emerged to deal with methodological issues in 

systematic reviews only. Perhaps such journals will increasingly put emphasis on what is needed 

to facilitate the next natural advances in practice.   

 

Concluding remarks 

In conclusion, this PhD thesis has explored issues of estimation and interpretation of meta-

analysed intervention effects and heterogeneity. The manuscripts in this thesis were designed to 

deal with issues closely related to current widespread meta-analytic practice. Each manuscript 

makes contributions by either eliminating issues of uncertainty about the credibility of methods 

that are or will soon be widely used, or by demonstrating problems with current methodological 

issues and subsequently educating on and demonstrating the superiority of alternative relatively 

simple methods. Overall, all of the manuscripts presented in the thesis met at least one of the two 

thesis objectives, and each manuscript constitutes an important contribution to the advance of 

meta-analytic practice.    
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