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INTRODUCTION

Alcoholic cirrhotic men often present testicular atrophy, azoo-
spermia, reduced body hair, beard growth, and prostatic size,
as well as gynecomastia, arterial spiders, female escutcheon, fe-
male body habitus and sexual dysfunction. These symptoms
suggest an endocrine imbalance of sexual hormones, but both
normal and decreased plasma testosterone (T) concentrations
and normal and increased plasma oestrogen concentrations
have been observed (1, 2, 3). Further, alcoholic cirrhotic men
have decreased albumin and increased sex hormone binding
globulin (SHBG) concentrations (1, 2, 3), which may alter the
metabolism and action of sex steroids (4). The mechanisms pro-
ducing the decreased T concentrations are incompletely under-
stood, ethanol toxicity and/or liver damage being possibly in-
volved (5, 6).

Hall and Korenchewsky (7) suggested a therapeutic value of
T in liver patients. They observed an increased liver weight
after injection of T propionate into castrated male rats (8).
However, contradictory clinical data have been presented re-
garding a beneficial effect of anabolic-androgenic steroid treat-
ment of cirrhotic patients (9).

The aims of the present study were to examine

a) plasma (or serum) T concentrations in men with alcoholic
cirrhosis,

b) the pathogenic mechanisms leading to variation of plasma
T concentrations,

c) the effect of oral T treatment on sex steroid concentrations
in peripheral plasma, and

d) the effect of oral T treatment on survival, liver biochemi-
stry, morphology, haemodynamics, and function, and gen-
eral well-being including sexual function of alcoholic cirrho-
tic men.

Testosterone metabolism in normal men
The metabolism of T depends on, among other things, the me-
tabolism of other androgens, gonadotrophins and oestrogens.

Production and interconversion of androgens. The secretion
of T from the testis is controlled by luteinizing hormone (LH)
and possibly indirectly by follicle stimulating hormone (FSH)
(10, 11, 12). Both are secreted in bursts from the pituitary gland
(10, 13). The Leydig cells secrete about 95% of plasma T (about
7 mg T/24 h), 50% of plasma 5a-dihydrotestosterone (DHT)
and 20-30% of plasma androstenedione (14, 15), the remainder
originating from interconversion of T or from adrenal secretion
(14) (Fig. 1). Interconversion of androgens is possible in the
splanchnic circulation, but the splanchnic circulation metabo-
lises and clears androgens from plasma (14).
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Protein binding of testosterone. Plasma T circulates freely
(2%, non-protein bound T) or bound to albumin (55%) or
SHBG (40%), or to other proteins (5%) (4, 14, 16, 17, 18). The
non-protein bound T and the non-SHBG bound T (consisting
mainly of non-protein bound and albumin bound T) are consi-
dered the biologically active (4, 16, 19, 20, 21), as albumin
binds T with low affinity opposed to SHBG (4, 14, 16, 17, 18).

Catabolism of androgens. The systemic metabolic clearance
rate of DHT is about 470 ml plasma/min compared to 700 ml
plasma/min for T and 1600 ml plasma/min for androstene-
dione, which reflect the association constants of SHBG for the
androgens (14). Women and hyperthyroid patients, who have
higher SHBG concentrations, have lower systemic metabolic
clearance rates of T than normal men (14). By infusion of T,
the systemic clearance rate of T increased (22). The splanchnic
extraction of T has been estimated to be about 50% (23). Be-
cause this extraction is greater than the non-protein bound T
fraction, a major part of T removed in the splanchnic circula-
tion is derived from protein bound T. Although the gastro-inte-
stinal mucosa may metabolize T (24), it is generally assumed
that the liver is the major determinant of the splanchnic clea-
rance of T. In accordance, the extraction of T in the gastrointe-
stinal tract is about 10% according to preliminary observations
(C. Gluud, F. Burcharth, P. Bennett, unpublished observa-
tions). Experimental studies have demonstrated that non-pro-
tein bound as well as non-SHBG bound T gain freely access
into liver cells, while SHBG inhibits the transport of T into the
rat liver (16). Pardridge (16) demonstrated a 90% first-pass ex-
traction of T in the isolated perfused rat liver both when T was
injected in Ringer’s solution or dissolved in rat serum (contai-
ning albumin, but no SHBG). In accordance, we (C. Gluud,
P. Bennett, and K. Winkler, unpublished observations) obser-
ved a splanchnic extraction of T of about 90% after injection
of T intravenously into a boar. Like rats, the boar does not have
measureable amounts of SHBG (25, C. Gluud and P. Bennett,
unpublished observations).

Production and interconversion of oestrogens. Oestrogens ori-
ginate from testicular secretion and from enzymatic (aroma-
tase) conversion of androgens (Fig. 1). Aromatization of T and
androstenedione accounts for more than 70% of oestradiol and
more than 90% of oestrone produced (26, 27), and >90% of
aromatization takes place in extrasplanchnic tissues (27). Oe-
strone and oestradiol are readily interconverted (26).

Plasma protein binding of oestrogens. The non-protein bound
fraction of oestrogens accounts for 2-3%, the albumin-bound
fraction for 75%, and the SHBG-bound fraction for 25% (17,
18). Due to a lower association constant of SHBG for oestra-
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Fig. 1. Interconversion of androgens and conversion to oesirogens.
Enzymes involved are: (1) I17-ketosteroid oxidoreductase, (2) Sa-
reductase, (3) aromatase.
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diol, the latter gains faster access to the extravascular pool than
T (4, 16, 26, 28, 29).

Determination of plasma testosterone concentrations
Plasma T (or serum, giving identical results (30)) can be meas-
ured with sensitive and specific radioimmunoassays (RIA) (31,
32). However, antibodies raised against T may react with other
steroids and other substances (e.g. lipids) may interfere (31, 32,
33). Therefore, separation techniques must be used (31, 32).
We have used a modification of the RIA described by Barberia
and Thorneycroft (34), the major modification being the use
of a different elution system of the Celite column chromatogra-
phy (35, 36, 37, 38, 39, 40, 41). The detection limit is 0.20
nmol/] and the RIA is specific. Thus, the addition of interfer-
ing steroids to the samples do not affect the analytical results,
and the recovery of T is 96% (SD =4%) (P. Bennett, unpublis-
hed observations). Further, when the RIA was compared to
another RIA using other methods for extraction, seperation,
and antibody production, we found no significant differences
between the T values of the assays in men with alcoholic liver
disease and alcoholic cirrhosis (39) (Fig. 2). By measurement
of SHBG and albumin, it was made probable that the non-pro-
tein bound T concentration could be calculated in alcoholic pa-
tients together with the non-SHBG bound T concentration (39).
In a further study (42), we used the RIA of Parker et al (43)
for determination of T. This RIA obtains plasma T concentra-
tions in the same range as those obtained by the former method
(39) both when normal men and men with alcoholic cirrhosis
were examined (42) (Fig. 3).

Plasma testosterone concentrations in men exposed to ethanol
Van Thiel et al (44) suggested that the low plasma T levels of
men with alcoholic liver disease were due to a direct effect of
ethanol and not secondary to an effect of ethanol on the liver.
Since then in vitro and in vivo studies have shown that ethanol
exerts multiple effects on the hypothalamic-pituitary-gonadal
system. The general concept that has emerged is that ethanol
(or acetaldehyde) depresses T levels (2, 3, 45, 46, 47, 48, 49).
However, in vitro experiments should be interpreted with cau-
tion as they do not compare to the intact organism in which
metabolic and hormonal factors may counteract a toxic effect
of ethanol. Second, animal experiments may not be relevant for

Plasma testosterone
(nmolff)
60 -
NS
40 -

Fig. 2. Plasma concentrations of testoste-
rone in alcoholic cirrhotic men treated
with testosterone until the day before
20+ blood was drawn (®, n=4) or previously
untreated (o, n=14). Testosterone con-
centrations were determined by two diffe-
rent methods, method II being that used in
the present study (Data from Gluud and
Bennett 1986 (39)). NS denotes not signifi-
cant (Wilcoxon test). The results correla-
ted significantly (R =0.91, p<0.001, Spe-
arman test).

565




Plasma testosterone (nmolll)

607 (30) (24) (20) (42) (28) (14) (51) (216) (9) (14)
NS NS NS NS NS

50 T

40 .|

30«

20 = -+ iz

10+
CACH. CIAC] iCIACH C AT, CAG
Gluud Gluud Gluud& Gluud Gluud
etal  etal Bennett stal etal
1981 1983 1986 1987 1987

Fig. 3. Plasma testosterone concentrations in male controls (C) and
men with alcoholic cirrhosis (AC) from five series (references 35, 37,
39, 40, 42). Vertical lines represent range and horizontal lines median.
Figures in brackets are number of subjects. NS denotes not significant
(Mann-Whitney test).
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Fig. 4. Plasma testosterone concentrations in male controls and men
with alcoholic cirrhosis divided into groups A, B and C according to the
modified Child-Turcotte’s classification. Data from Gluud et al 1983
(37) (left) and Gluud et al 1987 (40) (right). Figures in brackets are num-
ber of subjects. Vertical lines represent range, boxes interquartile range,
and horizontal lines median.

man due to species differences (50, 51). Third, data in men ex-
posed to ethanol display conflicting results regarding plasma T
concentrations.

Acute administration of ethanol to normal men does not af-
fect plasma T concentrations (52, 53, 54, 55, 56), whereas chro-
nic administration (=200 g ethanol per day for up to 30 days)
decreases plasma T (57, 58). The latter studies, however, did
not include controls. As T levels may be suppressed by stress,
dietary factors, and physical activity (59, 60, 61, 62), such fac-
tors should be considered. Moreover one does not administer
these amounts of ethanol without affecting the liver (57).

In cross-sectional studies of twins and healthy elderly men
(63, 64) alcohol consumption was not related to plasma T.
Further, normal plasma T concentrations were observed in
chronic alcoholics without cirrhosis, both while drinking alco-
hol and following alcohol withdrawal (44, 65, 66, 67, 68, 69).
Lindholm et al (68) observed normal non-protein bound T con-
centrations in spite of increased SHBG concentrations; accor-
dingly these patients had normal plasma LH concentrations
(70). The increased SHBG concentrations were not significantly
related to serum oestradiol concentrations (68).

Although this lack of association was taken as evidence
against a relation between oestradiol and SHBG production
(68), recent observations make a different interpretation possi-
ble. First, alcoholics without cirrhosis have increased oestrogen
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concentrations (68, 69, 71), although other studies have ob-
served normal concentrations (44, 65, 69). Second, alcohol in-
creases the rat hepatic aromatase activity (72), making an incre-
ase of hepatic oestrogens likely. Further, alcohol increases the
level of hepatic oestrogen receptor and decreases the level of
the hepatic androgen receptor (73, 74, 75, 76). These effects
could lead to the increased SHBG concentrations of alcoholics
(25, 68, 77). Due to the stronger binding of T than oestrogens
to SHBG, such an increase of SHBG could further increase the
action of oestrogens through an increase of the metabolic active
oestradiol/T-ratio (78).

In summary, it still remains to be demonstrated conclusively
that alcohol consumption per se reduces plasma T of men.
However, chronic ethanol consumption may through its effect
on oestrogen metabolism and on hepatic microsomal enzyme
function (79) increase SHBG levels. This could increase the oe-
strogenic and decrease the androgenic activity, and lead to sym-
ptoms like gynecomastia seen in non-cirrhotic alcoholics (3).

Plasma testosterone concentrations in men with alcoholic
cirrhosis

Plasma T concentrations have been reported to be low or nor-
mal in men with alcoholic cirrhosis (2, 3), and it has been consi-
dered that ethanol - not liver dysfunction - causes the low
plasma T concentrations (2, 3, 47, 58, 80, 81). In contrast we
found median plasma T concentrations in alcoholic cirrhotic
men which did not differ significantly from those of normal
controls or non-alcoholic, non-cirrhotic patients (35, 37, 39,
40, 41, 42) (Fig. 3). When T concentrations were related to liver
function on a quantitative basis, we were unable to disclose any
significant relations apart from a positive correlation with
serum albumin (r=0.44, p<0.01) (36).

However, when the severity of liver cirrhosis was estimated
by a modified Child-Turcotte’s classification (37, 40), which is
related to portal pressure and contains significant prognostic
information regarding death (41, 82), we observed a significant
association between decreasing liver function and declining
plasma T concentrations (Fig. 4). The patient groups did not
differ significantly regarding ethanol consumption, and the
liver function-T association was still present when data on etha-
nol consumption were included in a multivariate analysis (40).
Due to the raised SHBG levels (37, 40) patients with preserved
(Group A) and moderately decreased (Group B) liver function
had median plasma T levels above the controls (Fig. 4). Pa-
tients with severely decreased liver function (Group C) had
lower plasma T than controls. The relation between liver func-
tion and plasma concentrations of T, non-protein bound T and
non-SHBG bound T can also be observed from Fig. 5. As de-
monstrated, the majority of patients had plasma concentra-
tions of non-protein bound T and non-SHBG bound T in the
lower range of controls or depressed values. Neither in the first
(37, C. Gluud et al, unpublished observations) nor in the se-
cond patient series (40) were we able to demonstrate any rela-
tion between ethanol consumption and plasma T concentra-
tions.

In conclusion, decreasing liver function, but not ethanol con-
sumption, seems to be responsible for the low levels of T in al-
coholic cirrhotic men. Due to the increased SHBG levels, how-
ever, patients with preserved liver function may have supranor-
mal plasma T concentrations. This is in accordance with obser-
vations by Shlimovich and Kogan (83) and Zumoff et al (84).
Further, the increased SHBG levels lead to low concentrations
of non-protein bound and non-SHBG bound T, which also de-
clines with decreasing liver function.

Is the liver function-plasma testosterone relation accidental?
As the association between liver function and plasma T has
been observed in cross-sectional studies, the correlation may be
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Fig. 5. Plasma concentrations of testosterone, non-protein bound te-
stosterone, non-SHBG bound testosterone, and SHBG in male controls
(C) and in men with alcoholic cirrhosis. The patients are divided accor-
ding to the modified Child-Turcotte’s score. Increasing score means in-
creasing severity of liver disease. Horizontal lines represent median va-
lues. In the control group, the vertical line represents the range and the
box represents the interquartile range. Values obtained in individual pa-
tients are represented with a dot. Data from Gluud et al 1987 (40). In
patients, plasma concentrations of testosterone, non-protein bound tes-
tosterone and non-SHBG bound testosterone decreased significantly
(p<0.001, Kruskal-Wallis test) with increasing modified Child-Turcot-
te’s score. SHBG concentrations were insignificantly related to the
score.
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accidental. Factors influencing T levels could correlate with
liver function and explain the association.

SHBG concentrations are significantly increased in men
with alcoholic cirrhosis (3, 44) and this has been confirmed by
us using DHT binding assays (37, 39, 40, 42). Binding assays
correlate closely with RIA and electroimmunoassays (85, 86).
It is assumed that the increased SHBG levels is due to increased
oestrogenic and decreased androgenic actions on the liver lead-
ing to increased SHBG synthesis (25, 80, 87, 88, 89). However,
a positive correlation between SHBG and T levels was observed
(40) and SHBG is an unlikely explanation of the association
between the modified Child-Turcotte’s classification and
plasma T, First, SHBG was included as a background variable
(40). Second, SHBG concentrations are not significantly corre-
lated to liver function (37, 40) (Fig. 5).

Stress is associated with inhibition of gonadotrophin secre-
tion leading to low T concentrations (59, 90). However, stres-
sed patients were excluded in the first series (37) and we were
unable to disclose any significant differences among the pa-
tient groups with regard to cortisol and prolactin concentra-
tions (C. Gluud et al, unpublished observations, 91). This
makes stress a less likely explanation of the liver function-T re-
lation.

Medication should be considered. A number of drugs used
in cirrhotics may affect plasma T (14, 92, 93). In men with alco-
holic cirrhosis the prevalence of spironolactone and loop-diure-
tic medication increased and sedative medication decreased
significantly with declining liver function (Table 1) (C. Gluud
and the Copenhagen Study Group for Liver Diseases (CSL),
unpublished observations). No significant associations could be
demonstrated between liver function and the prevalence of me-
dication with thiazide diuretics, peroral antidiabetics, insulin,
antihypertensive drugs, disulfiram, anti-epileptic drugs, vita-
mins and other drugs. For the following reasons, the liver func-
tion-plasma T relation does not seem to be due to differences
in medication. Patients receiving spironolactone were excluded
in our first patient series (37), and spironolactone medication
was not significantly associated with plasma T in our second
series (40). Moreover, spironolactone in doses at or below 100
mg per day (which was mostly used) is not always followed by
a decrease in T levels (94, 95). Further, we were unable to dis-
close any association between loop-diuretics and plasma T le-
vels when liver function was considered (C. Gluud and CSL,
unpublished observation). Lastly, if sedatives were to affect
plasma T, one should expect a decrease (14).

Concurrent diseases like diabetes mellitus, renal dysfunc-
tion, and hypothyreoidism should be considered (14, 96, 97, 98,
99). However, patients with concurrent diseases were excluded
(37). In the second series (40), 9% of the patients were diabe-
tics. However, the prevalence was not related to liver function,
and none of the diabetics were examined during poor metabolic
control. Well controlled diabetics have normal plasma T levels
(96, 97). Serum creatinine was included as a background vari-
able, and was not significantly associated with plasma T con-
centrations (40). Although patients in both series (37, 40) appe-
ared to be euthyroid, we have demonstrated a positive correla-

Table 1. Prevalence (with 95% confidence limits) of various medica-
tions in alcoholic cirrhotic men divided according to the modified
Child-Turcotte’s classification. Data are from patients included in ref.
41 and 172.

Group A Group B Group C
(n=46) (n=150) (n=14)
Spironolactone .............. 17% 27% 79%*)
(8-31%) (39-68%) (49-95%)
Loop-diuretics ......covvuvane 15% 54% 86%*)
(6-29%) (39-68%)  (57-98%)
Sedatives: v s tanmei o 30% 0% 0%*)

(18-46%)  (0-7%)  (0-23%)

'*) p<0.001 (3 for trend).
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tion between plasma triiodothyronine and T concentrations
(100). However, this may be due to a covariation with the seve-
rity of liver dysfunction as these patients demonstrated normal
thyroxine and thyrotrophin levels (100).

Malnutrition and overweight are associated with low T con-
centrations. Severe protein restriction, lack of trace elements
(zinc and manganese) and vitamins (A, B, D and E) and obesity
may lead to low T concentrations (98, 101, 102, 103). In the
first series (37), patients received a hospital diet plus vitamin
supplementation for at least two weeks. This also applies to the
majority of patients included in the second series (40). Further,
Broca’s index was included as a background variable and prov-
ed insignificantly related to plasma T (40), and the three patient
groups (A, B and C) did not differ significantly regarding Bro-
ca’s index. Finally, when a modified Broca’s index was form-
ed by subtracting 6 kilogrammes (kg) from the weight of all pa-
tients with ascites in order to correct for this variable in calcu-
lating Broca's index, we observed a significant (p<0.01 for ho-
mogeneity) decrease in median modified Broca’s index among
the groups (Group A 1.04 kg/cm (range 0.70-1.54); Group B
0.99 kg/cm (0.67-2.04); Group C 0.92 kg/cm (0.54-1.25)), but
this index was not significantly related to plasma T levels (C.
Gluud and CSL, unpublished observations).

Moderate physical excercise increases T levels, while ex-
hausting physical activity causes a decrease (60). Although phy-
sical activity was not taken into consideration, all patients in
the first series were ambulatory in-patients (37) and duration
of hospitalization was included as a background variable in the
second series (40). It was demonstrated that duration of hospi-
talization was inversely correlated to plasma T concentrations
(40). None of the patients investigated engaged in exhausting
physical exercise.

Genetic factors may account for 26% of T level variation
and 34% of non-protein bound T level variation according to
Meikle et al (63). Such genetic effects were not considered in
our studies and might be relevant (81). Although some studies
have observed an increased prevalence of certain HLA-antigens
in patients with alcoholic cirrhosis (104), other studies have
been unable to disclose such an increase (105, 106). Therefore,
HLA-types do not seem a plausible explanation of the differ-
ence between controls and alcoholic cirrhotics regarding
plasma T variation. However, we are unable to exclude that
HLA and other genes may have an influence on plasma T varia-
tion among the patients.

Increasing age is associated with declining plasma T concen-
trations (60, 107). However, age is an unlikely explanation of
the liver function-T relation as age was included in the multiple
regression analysis (40), and the patient groups did not differ
significantly regarding age (37, 40).

In summary, possible confounders do not readily explain the
observed relation between liver function and plasma T concen-
trations.

Pathophysiologic mechanisms explaining the liver
function-plasma testosterone relation
The concept of the importance of declining liver function for
the decreasing plasma T concentrations in alcoholic cirrhotic
men is in accordance with some observations (69, 108, 109).
It has previously been observed that men with alcoholic cir-
rhosis have a decreased systemic clearance of T (3, 108, 110,
111), which may be explained by the raised SHBG concentra-
tions (111). However, by oral administration of a dose of T
which was able to produce plasma T levels above the SHBG
binding capacity, we observed an association between the de-
creased liver function and plasma T levels following the load
(38). Recent data support that both decreased liver function
and increased SHBG levels cause the reduction of systemic
clearance of T (112). Accordingly, the low non-protein bound
and non-SHBG bound T levels are caused by a decreased pro-
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duction of T. In support of our observations (37, 40), Lourens
(108) observed a decline in the production of T with decreasing
liver function in men with non-alcoholic and alcoholic cir-
rhosis.

The pathophysiologic mechanism relating liver function
to plasma T concentrations seems most likely to be increased
oestrogenic activity. Most studies have observed increased
plasma oestradiol and oestrone concentrations in men with al-
coholic cirrhosis (3, 36, 111, 112). The raised oestrogen concen-
trations are due to an increased production and not a decreased
systemic clearance (3, 108, 110, 111). In accordance, the aro-
matization of T and androstenedione (Fig. 1) is increased in al-
coholic cirrhotic men (108, 110, 111). With decreasing liver
function, the extraction of oestrone and oestradiol in the liver
decreased (112), and in accordance the plasma oestrone concen-
tration increased with decreasing liver function (37, 109, 113).
Some studies (109), but not all (37, 113), also observed an incre-
ase of oestradiol concentrations with decreasing liver function.
Further, we observed increased non-SHBG bound oestradiol
concentrations (42). Finally, the increased SHBG levels may
work as an oestrogen amplifier (78), even in cases with normal
oestrogen concentrations.

The increased oestrogen concentrations in plasma presum-
ably combined with a local increase in aromatization and in oe-
strogen receptor levels may lead to a direct inhibition of Leydig
cell T production and/or to an indirect inhibition via a decreas-
ed hypothalamic-pituitary function (114, 115). Men with alco-
holic cirrhosis demonstrate either normal or increased LH and
FSH concentrations (3, 36), but the concentrations seldomly
reach levels observed in patients with hypergonadotropic hypo-
gonadism. We observed that the raised LH and FSH levels de-
clined towards normal values with decreasing liver function in
alcoholic cirrhotic men (37). Further, a dexamethasone induced
decrease of plasma oestrogen concentrations was associated
with a significant increase in both LH and FSH concentrations
which increased with decreasing liver function (37).

In summary, increased oestrogenic activity depresses the hy-
pothalamic-pituitary axis and this decrease together with a di-
rect depressing effect of oestrogens on the Leydig cells may
alone - or together with other pathogenic mechanisms (81) -
lead to low or subnormal concentrations of non-protein bound
T and non-SHBG bound T in alcoholic cirrhotic men.

Plasma testosterone concentrations in patients with
non-alcoholic cirrhosis
Studies in men with non-alcoholic, non-haemochromatotic cir-
rhosis both support and contradict the liver-T association.
Mowat et al (116) and Green (1) found no significant differ-
ences between alcoholic and non-alcoholic cirrhotics regarding
plasma T and non-protein bound T concentrations. In contrast,
other studies observed lower T levels in alcoholic than in non-
alcoholic cirrhotics (110, 117, 118), but these studies did not
consider SHBG concentrations and the severity of liver disease
was not always optimally balanced.

In haemochromatotic cirrhotics iron disposition also occurs
in endocrine organs, which complicates the comparison of
endocrine function (119, 120).

Consequences of hypoandrogenization and
hyperoestrogenization in alcoholic cirrhotic men

Previously, hypoandrogenization was considered responsible
for the hypogonadism (encompassing testicular atrophy, hypo-
and aspermia, sexual dysfunction, and reduction of body hair,
beard growth and prostatic size) and hyperoestrogenization
for the feminization (encompassing gynecomastia, female body
habitus and escutcheon, and arterial spiders) frequently observ-
ed in alcoholic cirrhotic men (1, 2, 3). However, studies attemp-
ting to relate plasma T levels to hypogonadism and plasma oe-
strogen levels to feminization have mostly been negative (36,
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44, 68, 110). Further, no apparent association between liver
function and signs of hypogonadism and feminization could be
established (1, 36, 44, 70).

Progress in the understanding of the interaction between
androgens and oestrogens and their receptors, however, have
demonstrated that relating plasma steroid concentrations to cli-
nical signs may be too simple an approach (121). Moreover, a
single cross-sectional look at e.g. oestradiol levels may not be
sufficient to explain gynecomastia which may require months
in order to become palpable (122, 123). However, when large
series are considered an association may appear. We observed
significantly (p<0.05) increasing prevalences of gynecomastia
and testicular atrophy with decreasing liver function (Fig. 6).
Considering the decreasing T levels and the increased or increa-
sing levels of oestrogens with the severity of liver function, the
oestrogen/T-ratio increases with declining liver function (37,
40). Moreover, this increase will be even more marked if one
considers the oestrogen/non-protein bound T-ratio or the oe-
strogen/non-SHBG bound T-ratio. It is conceivable that this
increase is associated with the development of gynecomastia,
as we observed a significant depressing effect of T treatment
on the prevalence of gynecomastia (41). The increasing preva-
lence of testicular atrophy could possibly be related to the decli-
ning levels of T and FSH (37, 40).

In summary, it is possible to demonstrate relationships be-
tween liver function, changes of sex hormones and clinical signs
of the disturbed balance of sex hormones in alcoholic cirrhotic
men. It is likely that such relationships could be deliniated in
more detail from the measurement of sex steroid receptor levels
and from circulating compounds related to oestrogenic and an-
drogenic activity (124, 125, 126, 127).

Effects of anabolic-androgenic steroids on the liver
This section will summarize the possible therapeutic effect of
anabolic-androgenic steroids (AAS) in cirrhotic patients. Con-
cerning the increasing knowledge of the actions of AAS on the
liver, the reader is referred to recent reviews and studies (9, 76,
128, 129, 130, 131, 132, 133, 134).

It seems now established that the liver contains both andro-
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Fig. 6. Prevalences (with 95% confidence limits) of ascites, gynecomas-
tia (>2 cm in diameter on one or both sides), and testicular atrophy
(mean volume <15 mi) in men with alcoholic cirrhosis divided into
group A, B, and C according to the modified Child-Turcotte’s classifi-
cation. Data from Gluud et al 1983 (37) (left) and Gluud et al 1987 (40)
(right). N are number of patients. NS denotes not significant. P-values
are calculated by the x*-test for trend within each study. No p-values are
calculated for the prevalence of ascites as this variable was included in
the division of patients.
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gen receptors and oestrogen receptors (76, 135, 136), but cer-
tain effects of AAS on the liver (e.g. increase in rat liver weight)
may use androgen receptor independent mechanisms (121,
137).

Male sex may protect the liver against a number of noxious
substances, including ethanol (9). Studies demonstrating a de-
creasing effect of AAS on lipid accumulation caused by such
substances suggest that AAS may be responsible for the sex dif-
ference (9). Human studies have suggested an increased risk of
alcoholic liver disease in women (138) and demonstrated a fa-
ster clearing of fatty change in male alcoholics following AAS
(9). Moreover, T may reverse an ethanol induced inhibition of
chick fetal hepatocyte growth (139) and animal studies have de-
monstrated an increased liver weight following AAS treatment
(9), although some studies have been unable to demonstrate
this effect (140). It remains to be demonstrated if AAS can in-
crease liver DNA, but AAS may stimulate hepatocyte RNA and
protein synthesis (9).

In a meta-analysis (141), the author (9) made probable that
AAS treatment may reduce the relative mortality risk (RR) of
cirrhotics to 0.46 (95% confidence limits 0.23-0.90,
(p=0.025)). From the reviewed studies it appeared that AAS
treatment had to be given for months in order to be effective

).

Effect of oral testosterone treatment on plasma sex steroid
concentrations

In a phase II study, we compared the effect of injection of T
esthers intramuscularily to that of oral T administration on
plasma T levels (35). Oral T was examined as it seemed conveni-
ent for long-term studies (142). Moreover, as an effect of T on
the liver was supposed, the oral route enabled us to expose the
liver directly to T. Foss (143) was the first who administered
T by the oral route and he reported potency in a male castrate
foflowing 100 mg per day. Reports have demonstrated that oral
T administration leads to absorption of T via the portal tract.
Little is absorbed via the intestinal lymphatics (144, 145). Meta-
bolites are mainly excreted via the kidneys, only small amounts
appear in the bile (144, 145). The time course and amounts of
radioactive metabolites in urine appear to be very similar fol-
lowing intravenous and oral administration of T, more than
90% of the urinary activity being excreted within 48 hours
(146).

In spite of these observations it has become common belief
that oral T administration is ineffective (147, 148). However,
Johnsen et al (149) demonstrated that oral administration of
micronized (< 15 pm crystals) T is followed by a significant in-
crease in plasma T concentrations, and an effect on sexual abi-
lity in men with testicular atrophy was observed. Even larger
T cystals (125-400 pm) may be effective in raising plasma T
concentrations after oral administration (150).

T propionate (100 mg intramuscularily every second day cor-
responding to 84 mg T) produced median concentrations of T
of about 105 nmol/l in alcoholic cirrhotic men (35). When ad-
ministering 200 mg of micronized T g.i.d. median T concentra-
tions were about 175 nmol/l. Further, we noticed a larger varia-
tion in plasma T concentrations following oral than following
parenteral administration (35). Therefore, the relation between
plasma T concentrations two hours after an oral load of 400
mg T and liver function was examined (38). The increase of
plasma T after the load (log T) correlated inversely with hepatic
functions. These results were an extension of and in accordance
with observations demonstrating higher plasma T concentra-
tions in men with liver cirrhosis than in normal men following
an oral dose of 63 mg T (151). However, our observations (38)
were in contrast with those of Nieschlag et al (152) who demon-
strated a greater increase of plasma T concentrations in com-
pensated than in decompensated cirrhotics. The explanation
for these differing results are not evident. Nieschlag et al (152)
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used the presence of ascites to define patients with decompensa-
ted disease. When this criteria was used in our material (38),
the median increase of T was 93 nmol/I (range 13-634 nmol/1,
n=25) in patients without ascites compared with 152 nmol/I
(range 50-664 nmol/l; n=17) in patients with ascites (p <0.05)
(C. Gluud et al, unpublished observations). In support, Kley
et al (109) demonstrated higher plasma T concentrations with
more severe decompensation following T enanthate injection.

Aromatizable AAS lead to a significant increase in plasma
oestrogen concentrations, and the higher plasma T levels get,
the higher will plasma oestradiol concentrations reach (109,
153, 154). Due to the large doses used for oral T treatment
(35, 38, 142, 149), a significant increase in plasma oestradiol
and oestrone concentrations could be anticipated. We therefore
determined plasma and urinary concentrations of oestrogens in
males with and without alcoholic cirrhosis following oral T ad-
ministration (42). This study demonstrated that the increase of
both oestrogens and androgens was significantly higher in the
cirrhotics than in controls. Moreover, the cirrhotic group
achieved urinary excretion of oestrogens which was signifi-
cantly higher than in controls in whom no significant increase
could be demonstrated (42). Further, when a sample of the pa-
tients included in the T trial (41) was examined before and fol-
lowing oral T treatment plasma concentrations of oestrone and
oestronesulphate increased significantly, while only an insigni-
ficant increase in plasma oestradiol was observed (155).

In conclusion, oral administration of T leads to a significant
increase in plasma T, an increase which rises with decreasing
liver function. In alcoholic cirrhotic men, oral T increases the
plasma oestrogen concentrations, but the oestrogen/T-ratio de-
clines.

Effects of oral testosterone treatment of alcoholic cirrhotic
men

Due to the lack of effective therapy of cirrhotics (156) and the
possibility that AAS could improve the prognosis of cirrhotic
patients (9), we started in 1979 enrolling men with alcoholic cir-
rhosis in the Copenhagen multicenter trial of oral T treatment
versus placebo (41). Before this phase III study, phase 11 studies
(35, 38) demonstrated no frequent side-effects. The patients en-
tering the trial (41) had all histologically verified cirrhosis, 51%
also demonstrating alcoholic hepatitis in the biopsy. The cir-
rhosis diagnosis was confirmed by liver vein catheterization and
follow-up liver biopsies in a number of cases (82, 157, 158). The
prevalence of anti-HBs antibodies in these patients (41) is in ac-
cordance with previous studies (159, 160), and does not seem
to imply a viral ethiology of the cirrhosis.

Taking significant prognostic indicators (group A, B and C
of modified Child-Turcotte’s classification and incapacitation
index) and age into consideration, we found a RR of 1.17 (95%
confidence limits: 0.65-2.15) comparing the T group to the pla-
cebo group (41). Similar results were obtained when more accu-
rate prognostic indicators, such as portal pressure, were includ-
ed in the analysis (82). Further, when only including the pa-
tients with histologically verified alcoholic hepatitis in the ana-
lysis, the RR was 1.10 (95% confidence limits: 0.50-2.39) com-
paring the T group to the placebo group (41). Accordingly, we
are able to exclude with 95% confidence that oral T treatment
reduces mortality more than 50%, which was the hypothesis
tested in the trial (41).

In addition, oral T treatment did not significantly affect con-
ventional liver biochemistry, complications to cirrhosis and
causes of death (41) as well as the prevalence of alcoholic hepa-
titis, fatty change, and a number of other morphologic varia-
bles in follow-up liver specimens (158). Further, T treatment
did not significantly affect the development of macronodular
cirrhosis (or hyperplastic nodules) in micronodular cirrhosis
either when examining all follow-up liver specimens (158), or
only percutaneous follow-up liver biopsies (161). Finally, oral

570

T was without significant effects on liver haemodynamics and
liver functions in the group of patients studied (157).

Do anabolic-androgenic steroids improve the survival of cir-
rhotic patients? Fig. 7 shows the mortality rates and RR of
controlled studies on AAS-treatment of cirrhotics (41, 162,
163, 164, 165, 166). Only one study (164) observed a significant
improvement of survival by introducing AAS treatment. Furt-
her, Mendenhall et al (166) were able to demonstrate a signifi-
cant improvement of the six-month conditional survival in a
subgroup of oxandrolone treated patients.

Supposing that AAS treatment increases survival, what could
be the explaination of the lack of a significant mortality reduc-
tion? A number of factors could either alone or in combination
explain the negative results. First, all studies were dealing with
small populations which entails a risk of type II error. More-
over, patients may not have been balanced regarding a number
of prognostic variables at entry and during follow-up. Further,
disease activity may be pertinent to the therapeutic outcome
(156, 166). Second, the type of AAS should be considered. Aro-
matizable AAS could have an unpredictable effect due to the
increase of oestrogen concentrations. In rats, oestrogens may
inhibit the effects of AAS on the liver (128, 167). Third, a num-
ber of patients in the Copenhagen trial (41) were treated with
spironolactone (Table 1), which may decrease hepatic androgen
receptor levels and interact with T binding to these receptors
(168). However, we were unable to demonstrate any significant
interaction between the severity of liver disease, which correlat-
ed to some measure with spironolactone medication (Table 1),
and treatment effect (41). Fourth, recent studies suggest that
the human cirrhotic liver contains less androgen receptors than
normal liver (135, 136, 169). Therefore, differences in the re-
ceptor levels could possibly explain the differing therapeutic
outcomes (Fig. 7).

AAS treatment does not improve survival of cirrhotic pa-
tients. The studies observing a beneficial effect of AAS on sur-
vival may also be subjected to criticism. Islam & Islam’s study
(164) was unblinded, which may lead to bias. Further, 26% of
the patients were lost for follow-up. In the study by Menden-
hall et al (166) a number of factors may invalidate the results.
It can not be excluded that some of those included without a
biopsy may have had other diseases than alcoholic hepatitis.
Second, the significant effect of oxandrolone could only be de-
monstrated in the subgroup having »moderate disease activi-
ty«, and no significant effect was observed in those having se-
vere disease. Third, a treatment effect could only be observed
in a six-month conditional death rate analysis, and not when
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Fig. 7. Mortality rates and relative mortality risks (with 95% confi-
dence limits) in cirrhotic patients treated with anabolic-androgenic ste-
roids (AAS group) or receiving no treatment or placebo (control
group).
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Fig. 8. Pooled estimates of mortality rates and relative mortality risks
in controlled trials (n=6 from Fig. 7) and double-blind, placebo con-
trolled trials (Fenster, 1964 (163), Mendenhall et al 1984 (166), and the
Copenhagen Study Group for Liver Diseases, 1986 (41)) including cirr-
hotics treated with anabolic-androgenic steroids (AAS). P-values are
calculated by the Mantel-Haenszel test.

using Kaplan-Maier life-table analysis. This entails a risk of
mass significance. Moreover, the conditional analysis only in-
cludes patients who have survived the acute phase of the dis-
ease. Therefore, treatment groups may no longer be compar-
able.

Accordingly, it still remains to be demonstrated that AAS
may beneficially affect the course of patients with cirrhosis and
alcoholic hepatitis. As previously outlined (9), a meta-analysis
of the published results may be misleading due to the differ-
ences in patients included, drugs, dose, duration of treatment
and follow-up. However, when a pooled estimate of the RR of
the studies of Fig. 7 is calculated (Fig. 8) no significant diffe-
rence appears”. This is also the case when only the three dou-
ble-blind, placebo controlled studies are included” (41, 163,
166). Accordingly, AAS do not seem to reduce mortality by
more than 23%, but may also increase mortality by 22%. The-
refore, the therapeutic gain regarding survival is small, if it
exists, and side-effects like thrombosis can not be excluded (41,
158).

Effect of oral testosterone treatment on well being and sexual
Sfunction in alcoholic cirrhotic men

Men with alcoholic cirrhosis suffer from continued alcoholism,
increased morbidity, and sexual dysfunction (41, 158, 170). In
accordance with previous studies (171), we observed a preva-
lence of sexual dysfunction of about 70% in these patients
(172). However, in contrast with previous observations (171)
we were unable to demonstrate any significant effects of oral
testosterone treatment on sexual function (encompassing libido
and erectile and ejaculatory function) (172). Further, oral T
treatment did not significantly affect ethanol consumption or
incapacitation index (41).

Conclusions and final considerations
From the reviewed studies it appears that

- men with alcoholic cirrhosis as a group have normal median
plasma T concentrations, but about 20% of the patients have
values above and 20% below the normal limits,

- raised SHBG concentrations explain the supranormal T con-
centrations, but lead to subnormal or low non-protein bound
and non-SHBG bound T concentrations, which are currently
considered the biologic active fractions,

- liver function influences plasma T, which declines with de-
creasing liver function, and a concomittant increase of the
prevalence of gynecomastia and testicular atrophy was ob-
served,

- ethanol may not be the central factor in producing low T
levels in alcoholic patients, and further studies using ade-

1) RR=0.73; 95% confidence limits 0.51-1.03.
2) RR=0.98; 95% confidence limits 0.77-1.22.
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quate controls are needed to establish the effect of ethanol
on T in men.

Furthermore, in order to understand the combined mechanisms
of hypoandrogenization and hyperoestrogenization in more de-
tail, studies should examine the effects of e.g. anti-oestrogenic
drugs and the removal of oestrogens. Finally, the interaction
between sex steroids and their receptors needs investigation.
Based on therapeutic studies, oral testosterone treatment

- significantly increases plasma T concentrations, an increase
which is accentuated with decreasing liver function. Further,
cirrhotic patients obtain higher oestrogen concentrations
than controls. The latter increase may have implications for
the lack of effect and possible side-effects.

- does not significantly influence survival, liver functions or
morphology,

- and does not significantly improve well being and sexual
function of alcoholic cirrhotic men.

SUMMARY

The present review summarizes the pathogenic mechanisms
leading to variation of plasma testosterone concentrations,
consequences of hypoandrogenization and hyperoestrogeniza-
tion, and effects of oral testosterone treatment in men with al-
coholic cirrhosis.

These patients have normal median plasma testosterone con-
centrations, but 20% have values above and 20% have values
below the normal limits. The majority of patients have raised
sex hormone binding globulin (SHBG) concentrations. This in-
crease accounts for the supranormal plasma testosterone con-
centrations. With decreasing liver function, plasma testoste-
rone concentrations decrease significantly. The combination of
increased SHBG levels and decreasing liver function leads to
low or subnormal plasma concentrations of non-protein bound
and non-SHBG bound testosterone. This decrease, together
with raised oestrogen concentrations, may explain the increased
prevalence of gynecomastia and testicular atrophy which raises
with decreasing liver function.

Oral testosterone treatment of alcoholic cirrhotic men pro-
duces an increase in the plasma concentrations of testosterone,
androstenedione and dihydrotestosterone, but oestrogen con-
centrations increase as well. Oral testosterone treatment signifi-
cantly reduces the prevalence of gynecomastia, but is without
significant effects on liver biochemistry, morphology, haemo-
dynamics, and function, general well being, sexual dysfunction
and survival of alcoholic cirrhotic men.

A pooled estimate of the mortality risk of cirrhotic patients
treated with anabolic-androgenic steroids does not disclose any
significant difference compared with placebo treatment (rela-
tive risk 0.98; 95% confidence limits 0.77-1.22). Seldom, but
serious, side-effects of oral testosterone treatment can not be
excluded.
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INTRODUCTION

Calcium ions in plasma are either free (ionised) or bound to
protein and small anions. The most important calcium binding
protein is albumin, and the most important calcium binding
anions are bicarbonate, citrate, phosphate, lactate, and sul-
phate. Only the ionised calcium is physiologically active and
regulated by parathyroid hormone, 1,25(0OH),-D vitamin and
calcitonin,

Almost 20 years ago a calcium electrode for routine measure-
ment was developed, and it is hoped that this review will stimu-
late further research with the calcium electrode, which has since
been improved. The binding of calcium ions in plasma depends
on pH, which necessitates that the pH be controlled. pH must
either equal pH in circulating plasma, or pH and ionised cal-
cium must be measured together and ionised calcium subse-
quently corrected. If the original pH of the patient is known,
ionised calcium may be corrected to this pH value. Ionised cal-
cium at pH 7.40 is also useful even in a patient with an acute
acid-base disturbance, where it will resemble the value before
and after the acid-base disturbance. One of the purposes is to
describe how ionised calcium depends on pH.

Some authors have suggested that potentiometry of ionised
calcium is influenced by protein in the sample. We made some
experiments in which ionised calcium depends on the protein
concentration, but the observations were best explained as a
Donnan distribution across a semipermeable membrane.

Clinically testing the method was another purpose. Preg-
nancy is associated with a stressed calcium homeostasis, be-
cause the mother delivers 20-30 g calcium to the fetus. We ex-
amined whether ionised calcium depends on gestational age in
pregnant women. We measured calcium fractions in serum
from morbidly obese subjects and insulin dependent diabetics.
Calcium may be associated with essential hypertension, so we
also examined ionised calcium and blood pressure in a group
of 45-year olds.

CHEMICAL POTENTIAL

A component in a system can be characterized by its total
(stoichiometric) concentration (amount of substance per unit
volume) or its chemical potential (chemical free energy per
amount of substance unit). An energetic point of view is not

Danish Medical Bulletin

unusual to physicians. We measure and report the partial pres-
sures of Oz and CO,, proportional to the activities, H* is
measured and reported in pH units, proportional to minus the
chemical potential of H™, and osmolality is proportional to
minus the chemical potential of water. In the human organism
the free chemical energy of food is transformed to heat, work
of muscle, nerve conductance, growth, repair, and mainte-
nance of a constant internal environment. The total chemical
free energy of the organism always decreases, and more so than
the effective work. This law determines the direction of the net
Processes.

To studies of balance or metabolism the total concentrations
and amounts of substance may be relevant, but otherwise the
chemical potential is the relevant physiological quantity, be-
cause it determines the direction of the chemical processes,
transport, binding of hormones to receptors etc.

The free energy or Gibbs energy is a function of state, which
describes the maximum content of work of a system. It is as-
signed “‘G”’. G = U + PV — TS, and for a closed system with
constant pressure P and temperature T, AG = AU + PAV -
TAS. U is the internal energy of the system, V is the volume,
and S is the entropy. U + PV is the enthalpy H. The change
in free energy AG of a chemical reaction can be defined as the
free energy of the reaction products minus the free energy of
the reactants. When AG is zero no net work can be obtained,
and the reaction is in equilibrium. When AG is positive work
must be expended to make the reaction take place. When AG
is negative the reaction may occur freely, expending its own
energy, and it is possible to gain work. The more work which
can be gained, the farther is the reaction from equilibrium. The
decrease in free energy is sometimes called the driving force of
the reaction.

The chemical potential p; of an uncharged component in a
system can be defined as the change in free energy of the system
per unit component added at constant T and P. The amount
of component added must be infinitesimal, and the composi-
tion of the system must otherwise be constant. An ion with
charge z will add some electrostatic energy, zF®, where zF is
the charge per mole, and ® is the inner potential, which is not
measurable. It is not possible to experimentally separate the
chemical potential of the ion from its combined electrochemical
potential fij; = p; + zF®. However, the chemical potential of
a neutral salt can be measured when positive and negative
charges are added in equal amounts. With a non-thermody-
namical convention the chemical potential of single ions can
then be defined from the chemical potential of the salt.

No natural zero point exists for the chemical free energy, and
an arbitrary zero is therefore defined for G, H, and S of the
pure elements at some standard state. By measurement, use of
tables and calculation values can be obtained for the chemical
free energy of all substances in the standard state.

ACTIVITY

The thermodynamic functions of ideal systems can be gener-
alized to include non-ideal systems. In an ideal solution the
chemical potential of a component p; = p; (pure component)
+RT In x;, where R is the gas constant, T is the absolute tem-
perature, and x; is the mole fraction. The similar generalized
expression is p; = pf + RT In a; with the chemical standard
potential puf and the activity a; of unit 1 (one). The values of
u? and a; depend on the choice of scale (concentration, mo-
lality, mole fraction etc.) since the values of ai(c), ai(m), ai(x)
etc. must infinitely approach those of ¢, mj, x; etc. upon in-
finite dilution. In a non-ideal solution the standard state is
hypothetical with aj=1 on the chosen scale. In some systems
simple expressions can be obtained for activity coefficients
(vi, vi, fi etc.), which change the stoichiometric measure into
activity (ai(c) = yici, ai{lm) = y;m;, ai(x) = fix; etc.). Since che-
mical standard potentials are known and have been tabulated
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